@ Let us use definition (2), Sec. 55, to show that the sequence

.(=D"
z,,=—2+z(—nz)— (n=12,.)

converges to —2. Observe that [z,, - (-2){ = -]—2 Thus, for each £ > 0,
n
|z, - (-2)<e whenever n> gs

where n, is any positive integer such that ny 2 7‘=
E

@ Note that if z, =2 +i =" (n=1,2,...), then
n

©,, =Argz,, -0 and ©,,,=Argz,, , -0 (n=12,.)

Hence the sequence ©, (n=1,2,...) does converge.

@ Supposc that limz, =z. That is, for each &> 0, there is a positive integer n, such that
R—peo
Iz, —zI< € whenever n>n,. In view of the inequality (see Sec. 4)
lz, =zl 2liz I-lzll,
it follows that liz,I-lzll< &€ whenever 2> n,. That s, limlz, |=lzl.
n=yoe

(4 " The summation formula found in the example in Sec. 56 can be written

Zz“=—-z— when lzi<1.
1-z

n=]




If we put z = re”, where 0<r <1, the left-hand side becomes

. - & -
2 (re®y =Y r'e" = E r' cosnG-HE rsinn@;
n=1 1 a=l a=l

n=

and the right-hand side takes the form

re® 1-re” _ re’® —r’ _rcos@—r’ +irsin8
1—re® 1—re® 1-r(e® +e O+t 1-2rcos@+r°
Thus
rcos—r . rsin@

Zr"cosnGHEr"sinnG: S +i -
1—2rcosO@+r 1-2rcos@+r

n=1 n=l

Equating the real parts on each side here and then the imaginary parts, we arrive at the

summation formulas

= rcos@—r’ &, rsin @
3 r"cosnf=————— and Y rsinng = ————.
1—-2rcos@+r por 1—2rcos@+r

n=l

\

where 0 < r <1. These formulas clearly hold when r =0 too.

/@ Suppose that Zz,, =S. To show that zz" =5, we write z, =X, +iy,, S= X +iY and

n=1 n=l

appeal to the theorem in Sec. 56. First of all, we note that

ix, =X and iy, =Y.
n=1

a=|

Then, since 2(-)»,,) =-Y, it follows that

n=l

2.:,5. = i(x,, — iyn) = i[xl + i(—yn)] =X-iY= 3

=} a=1 n=l
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@ Replace z by 27 in the known series

oo 2n
Z
coshz=) =~
n-0 (2")!

to get

- 4n
cosh(z®) = Z (;n)'
n=0 ¢

Then, multiplying through this last equation by z,

o 4n+1
zcosh(z?) = Z (zzn)'
n=0 .

\

@ (b) Replacing z by z—1 in the known expansion

iV
& _Eh.’
n=e’"
we have
a_wiz-1)
¢ :;o n!
So

o

we have the desired result:

(|Z|< oo)

(Izl< o),

(Izl< o0),

(Izl< o),

(Izl< 00),

(lzl< o).



@ We want to find the Maclaurin series for the function

_ _z
S 5 +9 9 1+ /9y

To do this, we first replace z by —(z*/ 9) in the known expansion

I &,
X

(lzl<1),
as well as its condition of validity to get
Izl < ~/3).
1+(z /9 2;, (zl<+3)
Then, if we multiply through this Jast equation by é, we have the desired expansion:
(=1)" Sinel 3
f)= Z T (21 <3).

@D, -('(?): MR
CYR ) -
(‘) y\:O =) —F (O): Aa0 ) .
1E'(o):: (n 0= f:(—l)
(_() RX—O n7o

ZL €)hin o= ©

("W Q) ) tnot! )
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‘77) The function Il—- has a singularity at z =1. So the Taylor series about z=1i is valid when

g
Iz—il <~/2, as indicated in the figure below.

B ¢

\_/1‘ x

To find the series, we start by writing

1 1 1 1

1-z (-D)-(-0) 1-i 1-G-0/(=-0)

This suggests that we replace z by (z—1)/(1—1i)in the known expansion

and then multiply through by % . The desired Taylor series is then obtained:
o 4

|5 (-
l—z mz!)(l-_i)"M

(lzl< 1)

(z-il <~/2).

g: ) The identity sinh(z + 7i) = —sinhz and the periodicity of sinhz, with period 27, tell us that

sinh z = —sinh(z + i) = —sinh(z — 7i).

So, if we replace z by z— 7i in the known representation

oo 2n+1
sinhz=
; 2n+1)!

and then multiply through by ~1, we find that

os ~2n+l
oo (@)
sinkz a1

(lzl< o)

{iz — nil< o).
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1) we may use the expansjop

2n+|
smz = (_U"
; (2n+1)1

to see that when 0< [zl < oo

= (2n+1)' 7
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@ Suppose that 1 <lzl< oo and recall the Maclaurin series representation

This enables us to write

S N AR Y
T4z z ;] zz( z) Z

Replacing n by n~1 in this last series and then noting that

D" = (=)™ (=1 = (-1,

we arrive at the desired expansion:

(’zf< oo)

(lzi< D).

(1 <lzl< o0),

(1<lzl< ).



@ The singularities of the function f(2)

I Prosmy

ZZ"_Z=22”+—I+J§.,

n=0 Z z

f(z)=—i3-..__‘__~i”(1)"_ 3! g |
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@

has isolated singularities at z=0 and z=1i, as indicated in

@ The function f(z)=

2(1+2%)
the figure below. Hence there is a Laurent series representation for the domain 0 <lzl<1

and also one for the domain 1 <lzl< oo, which is exterior to the circle Izl= 1.

(zl<1).

For the domain O <lzl< 1, we have

f(Z) = % . ——-1-2_ - .l—i(—-Zz)n = i(_l)n Z2nal e % i i(_l)n ZZn-—l - 2(_]):«»! ZZn+I 42 _;_ )
n=1

1 +2 z =0 n=0 a=0

On the other hand, when 1 <lzl< o,

o1 1 LY _ e ey
f(l)=?'——l—='?2(—7) =2(2u23 =Z( 23¢| .
14— s

3 7 n=0 n=0 z =l <
#
In this second expansion, we have used the fact that (1) = (=) (=D = (-

. . — , - .
mplex number and C the unit circle w= PLEEY SR IR the w

fw)= CXP{'Z'(W - ‘1‘)]
2 w

has the one singularity w = 0 in the w plane. That singularity is,
C, as shown in the figure below.

@((d) Let z be any fixed co
plane. The function

of course, interior to



w plane

Now the function f(w) has a Laurent series representation in the domain 0 <Iwl< oo,
According to expression (5), Sec. 55, then

exp[ (w - ~—)J ZJ (Z)w" (O<lwl< o),

where the coefficients J.(2) are

exp[ﬁ( W — —I—JJ
J (2)= e _2\”’_

5 dw (n=0,%1,42,..).
2mivc w"

Using the parametric representation w=¢“ (- < ¢ < x) for C, let us rewrite
this expression for J,(2) as follows:

" exp[ e -e“" ]
J(z)=——-

s ! r K ~in
2mi ) e ie*dg = S J; explizsin gple™"*dg .

That is,

1§ . .
J(2)= ;;£GXP[—I(H¢ —zsing)]d¢ (n=0,%1,42,...).

(b) The last expression for J, (z) in part (a) can be written as
J,(2)= _217: f[cos(nq) —zsing) - isin(ng - zsin ))dg

= El;:[’cos(ngb —zsin ¢)d¢ —z—ir-_{sin(mp —2zsing)d¢

. .
=>Ls Jostng - zsin grap - Lo (=0t Eee,

That is,

Li=}= _ul-j‘cos(nr_b—zsin b)do (n=0,11,22,..

17‘)
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@ Differentiating each side of the representation

1 b
e (2i< 1),
we find that
l d - n - d n c -] C n
T s 20 = =) " =Y (n+ 1) (zl< D).
(-2 dz zo Eo dz z, Zo
Another differentiation gives
——%——3 = ii(n +1)" = i(n + 1)—d~z" = in(n+ D" = i(n+ D(n+2)z" (lzi<1).
(I - z) dZ n=0 =0 dZ n=| n=0

@ Replace z by 1/(1—2z) on each side of the Maclaurin series representation (Exercise 1)

1 3 .
—-——-(1_‘7‘)2 =’§(n+l)z (Izl< 1),

as well as in its condition of validity. This yields the Laurent series representation

I o (=D)"(n-1)
—_y A\ I <lz—=1l< o0),
2 Zz (z-1)" (hste=tle=)

e

(ySince the function f(z)=1/z has a singular point at z =
valid in the open disk 1z - 2I< 2, as indicated in the figure

A

0, its Taylor series about =2 1is
below.

X

To find that series, write

! _1 1
2 1+(z=-2)/2

1
z 2+(z-2)

to see that it can be obtained by replacing z by —(z— 2)/2 in the known €xpansion
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Specifically, n=0 (zl<1).
_1:12[‘@-2)]"
or ¢ 2El 2 (12~ 2i< 2,
1 (=)
z Z Sw(z=2)
£ 2" ) (Iz-2i< y),
D:fferennatmg this serjeg term by term, we have
I o
—_ \IZ - (=1
2 ; (- 2) Z 2n+1 (”+1)(Z 2)" (’z§2’< 2),
Thus
1 ]
;;=4~Z<~n (n+1)(z 2)
2 (z-21<2),
O “Let C be a cbntour lying in the open disk lw—li< | in ¢

he w plane that extends from the
point w=1 to a point

=2, as shown in the figure below.

- Z( D"(w-1y" (w-li<1)
n=0

term by term along the contour C. Thus

J-Ca’w jZ( D" (w-1)" dw-2<—1)j(w-1) dw.

n=0

But

z
dw .
and

JLow=1y *f(w-l)"dw [(“"’)"“] ==
I

n+1 n+l




Hence

_l n-1
(”) (z-1" (lz=1<1);

Logz= %—(;i)l (z-1)"' = Z.:’

and, since (=1)"" = (=1)""'(=1)? = (=1)"", this result becomes

(_l)nﬂ

n

Logz=z1 (z—1)" (z-1<1).

@ 1 (#7o)

‘(jz@‘): '%2
(
Y = [ - __l_._ 2 = T f—.:(i—r?)
f,e)= !,;;‘r_i)z” (.-(1—«0) .
r ( )V\
~ ~ = n e
= 4z 0= 2

A wn=-o

Z (22" (1al<t)
- W=D (’ l?*‘\((>

) ~ L %
= e - @Mw/@"“ =G

B gy B€ sLseeept =0
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@ The singularities of the function f(z)= —(—ZT arc at z=0,%i. The problem here is to
' 2"+
tind the Lauieit series for fihat 5 valid in the punctured disk 9 <lzi<?, dhgom Lelow.

g

2 3
L i i.. Z_ oo
e —1+”+2!+3!+ (z1< o0)
and
1
1 Z=1+Z+z2+z3+... (zl< D),
which enable us to write
e‘=1+z+"21“12+€lz’+--- (I2h< o)
and
1
=1_Z2+Z4_26+... ,l<l-
o (tzl< 1)

Multiplying these last two series term by term, we have the Maclaurin series representation

4

1, 1,
=ltz+=z2+ =34
22 +1 2 6z

1, 5,
..l - —— e,
=i#z 52 61+

which is valid when Izl< 1. The desired Laurent series is then obtained by multiplying each

side of the above representation by l:

z

o 1 1 5
=11, 5., 0<lzl<1).
22+ 2z 2°76" S
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