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f) (a) From the expansion

2 2 » )
= = U< o0),
e 1+1'+2'+3'+ (
we see that
1 11 1 1
+1+—. —p . —_... (0<'Z'<°°).
zexp(z) b4 TIPRETI

e 1
The principai part of zexp( -) at the isolated singular point z = ( is, then,
Z

1.1 1

2! z 31 2

and z=0 js an essential singular point of that function,

2
(b) The isolated singular point of T is at z=—], Since the principal part at z=-]
Z
involves powers of z+1, we begin by observing that
Z =(z+1)? —2z—l—(z+1) =2(z+1)+1

This enables us to write

(z+l) —2(z+l)+1_(z+])_2+ 1 .
l+z z+1 z+1 i

Since the principal part is %, the point z = -] jg a (simple) pole.
<

(c) The point z =0 is the isolated singular point of 2 » and we can write
z
3 5 2 4
S, gt =1-2 .3 _ (0<lzl< o) |
£ I 3! - 81 3! 51




COSsz

(d) The isolated singular point of is z=0. Since

cosz _1f. 2% z* Iz -2
: ;(1 + =___+_'_... (O<'Z|<°°),

- .1 .
the principal part is - This means that z=0 is a (simple) pole of gs_z.
z
_ -1
2-2 (z~2)*

isolated singular point z =2 is simply the function itself i w
(of order 3), ply 10n itself. That point is evidently a pole

(e) Upon writing

we find that the principal part of o : T at its
-2)

@ (a) The singular point is z=0. Since

N |

when 0 <lzl< oo, we have m =1 and B = ——21—' =—

(b) Here the singular point is also z=0. Since

2.2 3.3 4_4 5.5
1 ex4p(22)=_17 st l+£+2z +2z +2z +2z Fons
b4 Z 1! 2! 3! 4! 5!

3
when 0 <lzl< oo, we have m =3 and B=—%=—%.

(c) The singular point of %ﬂf)iz) is z=1. The Taylor series
z —

_ T 452 313
exp(22)=e2(z—l)ez=ez[l +2(z1' D, 2 (z2 ' 2 (23' 1) +] (lzi< )

enables us to write the Laurent series

2 2
exp(ZZ)_ez[ 1 +2 1 2 +_§_'(Z_1)+._.} (0 <lz—1l< o0),

- - +_._
(z-1)° =1 B z=1 2

Thus m =2 and B=e21—2'=2e2.




@ Since fis analytic at Zy, it has a Taylor series representation

f
F@=f(z)+ L@, zo)+f( (2=2)2 4. (z-2i<R,).
Let g be defined by means of the equation
g(z) =L@
-z

(a) Suppose that f(z,) #0. Then

_lz [f(zo)+f(z° (z2-2)+ f (‘0)(z Z) +- J
0

- f(Zo f (zo) f”(ZO (Z

Z=Z I!

This shows that g has a simple pole at z,, with residue Hz, )

(b) Suppose, on the other hand, that f (zy)=0. Then

) =— [ff?)( BN S PR }
0

f(zo) f”(zo (Z

T Z)+ (0<lz—gz)l< R,).

Since the principal part of g at z, is just 0, the point z =0 is a removable singular

point of g.
@ Write the function
\, 8a322
J@)= m (a>0)
as
9(2) 8a’z’
= — h = .
f@) oap ¢(z) G+ ai)

Since the only singularity of ¢(z) is at z = —ai, ¢(z) has a Taylor series representation

9(z)= ¢(ai)+@(z—ai)+%(?il(z—ai)z o dr= il 4]

%)+ (0<lz—zyl< R)).



about z =ai. Thus

f(z)=(

)[¢( )+¢( )( —ai)+ ¢”( )(z ai)’ +- ] (0<lz—ail<2a).

Now straightforward differentiation reveals that

‘iz —8a’7’ 16a°(z*> — 4aiz — a*
16a”iz—8a’z and ¢"(z)= a’(z 'zsz ).
(z+ai)! (z+ai)

¢'(2)=

Consequently, . o
i, ¢'(ai)=-7% i) =—i.
#(ai)=—-a’i, ¢’'(ai)= > and ¢”(ai)

This enables us to write

f@)=

(0<lz—ail< 2a).

3

{—azi ~Z(z-ai)- —lz—(z —ai)* + - ]
(z—ai) 2

The principal part of f at the point z = ai is, then,

il2 al2 a’i N
_z—ai (z—ai)2 (z— ai)

~————— isagoe®

(@ (a) The function f(z)= 12 has an isolated singular point at z = 1. Writing f(z) = ¢(Zi
z

where ¢(z)=2z" +2, and observing that ¢(z) is analytic and nonzero at z =1, we see
that z=1is a pole of order m =1 and that the residue there is B = o(l)=3.

(b) If we write
9(z)

) Ty

2

we see that z = s is a singular point of f. Since ¢(z) is analytic and nonzero at that

3
5, Where ¢(z)=%,

point, f has a pole of order m = 3 there. The residue is

p=2ClUD _ 3
2! 16
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(/2) (a) Write the function f(z)=-=— (Iz>0,0< argz < 27) as
& z+1

I
f(@)= ibi—zi where ¢(z)=7""= et (Iz1>0,0<argz < 27).
z

The function ¢(z) is analytic

throughout its domain of definition, indicated in the
figure below.

/ Branch cut

X

—
Q

Also,

¢(—l)=(—l)”4 =e%los(—l) =e%(lnl+in) inl4 T T l+l

= =COS—+isin— = — = ().
¢ 4 4 2

This shows that the function Shas apole of order m=1at z= —1, the residue there

being
1+
B=¢(-1)=—.
(-1 ;)
(b) Write the function D)= Logz as
(22 +1)°

= ¢(Z) = _ng_z
f(D)= iy where  ¢(z) b

From this, it is clear that f(z) has a pole of order m=2 at z=;

. Straightforward
differentiation then reveals that

Logz s TH20
R = =




@@ We wish to evaluate the integral

J' 322+2 .
Cz-D(*+9)

where C is the circle Iz —2I=2, taken in the counterclockwise direction. That circle and
the singularities z =1, +3i of the integrand are shown in the figure just below.

Observe that the point z =1, which is the only singularity inside C, is a simple pole of
the integrand and that

32 +2 322 +2 1
es = = =,
=l (z—=1}z"+9) z*+9 i -
According to the residue theorem, then,

32 +2 (1) )
S W LB TR ) W
IC(z—l)(z2+9) z S

£ S.) Let us evaluate the cosh 7z dz
b ntegral o . i )
Bidee e fcm Where Cis the positively oriented circle 17/ .
fee isolated singularities 7 =0 +; E bt
residues are 3 »*1 Of the integrand are interior to C. The desired

Ci
Res Oih Tz _coshme]
AR Rl LT

Res Coih 7z _ coshnz sl
=i Z(Z +1) Z(Z+i) - 2,
and
Res wj\hﬂz _ Coshzz Sl
=2+ z(z-i) D
Consequently,

ICOSh”ZdZ—2E'1 ,
c Z(Z2+l) =< +5+§)=4m.
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( 6. ) In each part of this problem, C denotes the positively oriented circle |zi= 3.

@ It is straightforward to show that

. (3z+2)° 1 (1) (3+2z)?
ff)=— 2t2" o LY B+207
ety e -2)(2+52)

This function ~[; f (l) has a simple pole at z =0, and
ALY -

J‘c z(z—l)(zz+5)dz 27::Iz{fos[zzf : =27 5 ~?m'
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@@Write

zz;s‘inlg = & where  p(z)=z—sinhz and q(z) = z*sinhz,
smhy g(z)
Since

P(r)=7i#0, g(7i)=0, and q'(mi)=nr? %0,
it follows that

Z—sinhz i g
Res> o PUT) mi 1
“r z'sinhz g (mi) 2 g

%Write

f(2)= p((_z))’ where  p(z) =z and ¢(z) = cosz.
q(z

Observe that

q(_;’_mﬂ): 0 (n=0,+142,..

Also, for the stated values of n,

P(§+n7c)=g+nn¢0 and q'(§+n7t)=—sin(g-+nn’)=(_l)rm¢0.

So the function f(z)= — has poles of order m =1 at each of the points
cosz

Z, =§+mr (n=0,+1,22,..).

The corresponding residues are

g Pz)

- =('_I)"+lzn.
q'(z,

N’




@ The simple closed contour C,, is as shown in the figure below.

Within C,,

—( N+ Zi)m
» the function ;

5 has isolated singularities at
Z°sinz

z2=0 and I=*ngm (n=1,2,...,N).

To find the residue at z2=0, we recall the Laurent series for cscz that was found in
Exercise 2, Sec. 67, and write

O<lzi< 7).

This tells us that

5 l has a pole of order 3 at 7 = ( and that

Z"sing
R l
s ——=—,
=0 z’sinz 6
As for the points z =+nzx (n = L2,...,N), write

_]ﬁ_—_M, where p(z)=1 and q(z) = z*sinz.
Z’sinz  g(z)




Since @

p(Enm)=1#0, q(xnm)=0, and g¢'(+n7)=n’n’cosnm =(-1)"n’n> #0,

it follows that

1 1 Gl N Gl Vi
Res = ; = :
z=tan 7%ginz (= l)"n2n2 )" n’m’

So, by the residue theorem,

dz 1 X D"
dz=2mi|—+2 E .
JCN Z%sinz ,:6 pord o

Rewriting this equation in the form

SEU 5 IO
B 12 4iden sing

and recalling from Exercise 8, Sec. 43, that the value of the integral here tends to zero as N
tends to infinity, we arrive at the desired summation formula:

i(_l)"“ __7_’:3_
ey 12

.

./ The path C here is the positively oriented boundary of the rectangle with vertices at the
points +2 and £2 +i. The problem is to evaluate the integral

J‘ dz

c(? =11 +3

The isolated singularities of the integrand are the zeros of the polynomial
9(2)=(2" ~1)* +3.

the property z* =1++/3;. It is straightforward to

also the two square roots of 1-+/3i. These are ¢
zeros,

in '\/§+. :
Zo=\/§e /6 ﬁl and ‘20=_\/§e-i”/6=—ﬁ+l,
V2




lie inside C. They are shown in the figure below.

3 4 Y C 2+i

—
X X
%

-2 o 2 X

To find the residues at z, and —z,, we write the integrand of the integral to be evaluated as

1 _ P
@ -D*+3  g(2)’

where p(z)=1and g(z) = (z* - 1)* + 3.

This polynomial g(z) is, of course, the same q(z) as above; hence q(z,) = 0. Note, too, that
p and g are analytic at z, and that P(zy) # 0. Finally, it is siraightforward to show that

q'(2)=4z (z2 - l) and hence that
q'(z9) = 424(25 1) = =246 + 6+/2i % 0.
We may conclude, then, that z is a simple pole of the integrand, with residue

P(Zo) - 1
q'(zy) -2V6+62i

Similar results are to be found at the singular point —Z,. To be specific, it is easy to see that
9'(=%)=-q"(Z)) =-q(z,) = 2\/6 + 6+/2i % 0,
the residue of the integrand at -7, being
P(=%) _ 1

q'(-7) 2V6+6v2i

Finally, by the residue thecrem,

\ =&

dz _ _, (_ ! . 1 _T
JCZzl— Y13 N\ 226 +6v2i 2\/_6_+6\/§iJ 242
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@ We are given that f(z)=

, )=0, and q'(z,) #0.
These conditions op q tell us that q h

=1 at g, Hence

at Zy; and this enabjes
us to write

-_ 9 -1
f(Z)_(z—Zo)z’ where 9(z) [g(2))"

So fhas a pole of order 2 at z,, and

=0z )=_ 28°(z)
ligﬂSf(z) ?'(z,) G

But, since q9(2)=(z- 2,)8(z), we know that

9'(2)=g(z,) and q”(zo)=23’(zo)-

Consequently, our expression for the residue of £ at % Can be put in the desired form:
Resf(z)=- ~q”’(¢)3
= [9(zy)]




@ To evaluate the integral f

*%—T, We integrate the function f
x
0

OW, where R~ 1.

closed contour shown bel

We see that

R -
J e =2,
R I

where
B =Reg : =Res — __ | g
] (z=i)z+7) i
Thus
dx dz
i)
SRET+1 RF A

Now if 7 is a point on Cp,

:z’+ueuzl’-n=R’~1;
and so

T
lfc : Jsle:ml" B e,
LA ~ET

Finally, then

(2)=

[
S a

25+

round the simple



O,

@ The integral j T can be evaluated using the function f(2)=

1
a Ty Py and the same
simple closed contour as in Exercise 1. Here

R
Lﬁ?+16-?%7= 27iB,
where B= 1535 EFETR Since
@ 11)2 ) _(_35__%_ el h
wé readily find that B = ') = :tl: and so
d =z dz

[ SR

LA +Y 2 e, (Z+1)*
Ifz is a point on C,, we know from Exercise 1 that

1Z2+U2R? -1;
thus

R

d
R3
< =
(R -1)° ( 1)7
F

-0 a5 R-»oo,

J dz
(2’ +1)°

The desired result is, then,

T dx b3 T dx
W B s L B vy v
A EN 2 2 (x*+1)

1]
By




@ In order ¢ show thay

we introduce the function

o

.j\\"d" =7
bk (x2+1)(x2+2x+2) Ty

Py

t
R
[ f0de s L, £z = 27i(B, + 3,
~R
where
z 1 .3
B —R S = \ S e T
i [(z2+1)(z~zo)]m 10" 10"
and
E 4 1
B =Reg = Sl 4
@ [(z-HXz *2+2]., 16”5
Evidently, then,
f Ydx X zdz
A x2+1)(x2+2x+2) %) c.(z2+1)(z2+2z+2)’
Since

f zdz
(2 +1)(;2 +2z+2)

/___/C( 2dz /S TR?
% (z

as R ©o, this means that

This ig the desired resyj

lim

Rca

£

R

;

-R

2+1>(z~zo)<z~z7,) (R“-n(k-x/z‘)z"o

Pt . x
(x2+1)(x2+2x+2) 5"



[’ r\ (Let'm and n be integers, where 0= m<n. The problem here is to derive the integration

\’“ formula

(a) The zeros of the polynomial 2" +1 occur when z*" =-1. Since

=1V = exp{i Q—k—;;}m] (k=0,12,....2n-1),

it is clear that the zeros of 7% +1 in the upper half plane are

=exp{i9—lfj—1)—zr—] (k=0,1,2,...n=1)
2n
and that there are none on the real axis.

(b) With the aid of Theorem 2 in Sec. 76, we find that

i a 1 &
Réd—g— -——-——* = e i (k=0,1,2,....,n=1).
= 2" +1 206 2n

m+1 .
7, we can write

Putting o= :

i(2k +)r(2m—2n+ l)]
2n

2m-n)*l _
Ck =

. exp[i (2k+ 1)(22m + l)n:\exp[—i& k1] =~ De,
n

Thus

2m
E _ 1 giara (k=0,1,2,....n= D).

In view of the identity (see Exercise 9, Sec. 8)

n-1 " (z » 1),

=

k=0




then,
n~1 2m 4 ne-| - 2an iz
; 4 — Ty i2a\k U gl—e €
27 3 Res— el X G LS T e ==
k=0 = 7" 4 n no l-e e
L kel U Y, _
'—; el i T T =
—-e n oe%—¢ nsing
(c) Consider the path shown below, where R>1.
? 4
C5R
Co X
0 R x

The residue theorem tells us that

2m

2m 2m n-i

X Z :
f 5 dx + ~2—;~—-dz=2m Res Zn 5
X +] G2 +1 =07 2" +1

or
x2m dx— T z2m
P T e == | ——d.
Sp X+ nsino 22741

Observe that if 7 is a point on C,, then

122" = R and 12 +112 R 1.

Consequently,
2 2 ‘“%-l TN
z m m R-Zn 2(a~m)~1
S—s—nR. 2 __ _ ,
’Iq R B e R
3 RZn

and the desired integration formula follows.

ﬂ'i erZar:*l
B s 4. ettt

n euz —e -



% . . R cosxdx
(. 1,/ The problem here is to evaluate .the integral _-[.(xz L where a>b>0. To do

1
this, we introduce the function f(2)= , whose singularities ai and bi lie
f( ) (ZZ +a2)(Z2 +b2) g

inside the simple closed contour shown below, where R>a. The other singularities are, of

course, in the lower half plane.

b
Cp X ai
X bi
' R *
According to the residue theorem,
R ix
iy e
@ +a) ) [ fyetaz = 27i(B, + B,),
where &
B = Re’s[f(z)e“] =[“’“ej“f“~} = A
z=a 1 2 T 2a(hE — i
- (z+aiXz* + b?) e 2a(0* -
That is, (@ +a Xz +bi) s 2b(@” = %)
R ix
f : e2 dx -z e;i e -
e Ty 1402
or .
f cosxdx T [e? e
L Y s (T"*Z)”Re [ r0etar
Cy

Now, if z is a point on Cae
If(z)lg M, where M, = !

, (R oA 5T
and le“l=¢™ < 1. Hence (R ~a*}(R* - p?)

Re f f(z)e dy sl i) < = 7R
(e fC,f(Z)e Z-MR”R—m'—)O as R~ oo,

So it follows that

T COsx dx T (et o
C+& NP gt T
Rk . ) a*~b* p i (a>b>0).






-, o (
2 T = [ 25047 2
- g * 2
o (2]
i, Y
I R (< &4 9 3@ (l‘f“’é)
OThe integral to be evaluated is _[x smaxdx where a>0. We define the function
3
f@)= 7 4; and, by computing the fourth roots of —4, we find that the singularities

Z' =ﬁeixl4 =l+i and Zz =_\[iei3ﬂ/4 =ﬁeixldeitlz =(1+i)i="l+i

both lie inside the simple closed contour shown below, where R>+/2. The other two
singularities lie below the real axis.

y
Cr
X X
Z 2
0 > R x

The residue theorem and the method of Theorem 2 in Sec. 76 for finding residues at simple
poles tell us that

R 3 iax
X e iaz 3. v
£x4 +4dx+fclf(z)e dy = 27i(B, + B,),




where

e 3 piazy iaz ia(1+i) -a_ i
=RCSZ =Z]€3 =..e__=£__._.=e €
=y 72"+ 4 4Zl 4 4 4
and
3 iag 3 iaz iaz. - -a -
e 2 2 ia(~14i) a_-ia
B=ResiC . Zf" & 0 o
HETE 4p -4 4 4
Since

ia ~ia
27i(B, + B,) = me( 5 ;e )= ine™ cosa,
Wwe are now able to write
f x’sinax
dx = -a o ia
_J; x*+4q e cosa ImJ'CR f(2)edz.

Furthermore, if z is a point on C,,, then

R3
[ f(z) €M, wvhere MR=—E;_—-—)0 as R—» oo

and this means that

tlm fc, f(2)e" ‘dz| < ch f(2)e®de

according to limit (1), Sec. 74. Finally, then,

—0 as R— oo,

©o

.
J"x fmaxdx=7ze'“cosa (a>0).
bR




