w QI Solluvrars
)

To find the Cauchy principal value of the improper integral j —-——_.__(x *+cosx

dx, we shall use
2 X2 +4x+5

Z+1 z+1
the function z = , where z =~2+i, and Z =-2~1, and
r@)= ZH4z+5 (z-z)(z- z) : '

ed contour as in Exercise 9. In this case,

the same simple clos

(x+1)e" dx Es s
f Tiaris e D=2z,

where
B=Res| —@+De® | (g +1)et _(=l+i)e
=u|(z-yXz~3) (z~-%) 2ei
Thus
(x+1)cosx
B
jx T Fax+5 &= ReQ2mB)- f F@)et,
or
(x+Dcosx , X
L mdx———(smz cos2) — j f(2)e'dz.
Finally,

we observe that if 7 is a point on C,, then

R+1
If(Is M h My=— """ _ 0 as R— oo,
SIS M, where ® = ROZIRS 20 -T—R— 57 -

The theorem in Sec. 81 then tells us that

-0 as R— oo,

lRe IC. f(z)e"dzl < l Ic. f()edz

and so

PV, I (x+1)cosx

dx=Z(sin2 - cos2),
X 2+ 4x+5 e




B

(a) Since the function f(z)= exp(iz®) is entire, the Cauchy-Goursat theorem tells us that its
integral around the Positively oriented boundary of the Sector 0Sr<R, 0<0<x/4
has value zero, The closed path is shown below,

y

Reini4

R R
.2 2 . =32
fe“ dx+f e dz-e"""fe "dr=0,
0 Cr 0
or

R

R
2 ; 2 2
J.e" dx=e"’4fe 4 dr-J‘ e dz.
0 0 G

By equating real parts and then imaginary parts on each side of this Jast equation, we
see that

R 1R, L
2 o -r s iz

{ cos(x )dx———,_2 ! e dr Refcke dz

and "

t. & &
fsm(x )dx=:/?£e dr—Imjc.e dz.
0

(b) A parametric Tepresentation for the ac Gy is 7= Ryt 0<8<z/4) Hence
2 rl4 g #/4
fck e dy = f €™ Rie“do = ip f ¢ R sin20 g2
0

cos28
0
Since ]e’”z °°’“’I

ede.

=1 and ]e”l= L, it follows thay

ni4
iz? ~Rsin2g

/fqe dZISRDje de.

aking the substitution $=20 in this last integra] 4 i
nd ref
of Jordan's inequality, we find that o : R
R w2 .

el oo,

0

—

n
2 2R =E‘)O as R‘)N

Then, by m
(2), Sec., 81,




{c) Inview of the result in part (b) and the integration formula

f e dy= ﬁ,
: 2
it follows from the last two equations in part (a) that

!cos(xz)dx=2l\/§ and {sin(xz)dx=-21-\/§,




@ The main problem here s to derive the integration formula

j:COS(ax) —cos(bx)
"“““{2-‘-——— dx
. j

using the indented contour shown below.

=T
_Z(b a)

y

Applying the Cauchy-Goursat theorem to the function

er’az - eibz

f(z)= o

we have

[ f@dz+ [ f@de+ [ f@ydz+ |, farde=o,

e,

or

[ f@de+ [, f@de=~[ f)dz- [ fa)dz.

Since L, and —L, have parametric representations
Liz=ré’=r(pSr<R) and —L:z=re"=—r(p<r<R),

we can see that

ibr R —iar _ ~ibr

jhf(z)dz+jlqf(z)dz=j“f<z>dz-j_hf(z)dz=feim;e dr+ [“—="—ar
P

b r

R . iar ~iary _ ¢ ibr —ibr L - S
= ,[ e +e™)=(e" +e )dr - 2[ cos(ar) 2c:os(br) e
P

r? ¥

P




Thus

2} Cos(ar)r—zcos(b’) dr= "j’cp f(z)dz— Jc, f(z)dz.
P

)

N3
jaz (i)’ _ (iaz)’ { +£’£+(ib?__)z+(_‘_”£)_+...)]
f(z)=—13[(1+%5+ TR B G TR TR

SHa=b) .. (0<ld<eo).

i = ~B 7 =—i(a—b)ni= n(a-b).
lim jcp f(z)dz=~B,

As for the limit of the value of the second integral as R —s °%, We note that if z is a point on
Cy, then

iuz ihz -ay ~by
f(z)s-'f——,t‘e !=e +e <H—l 2

Izl RR ~ R TR

-« Consequently,

»

’fC‘f(Z)dzls;:—anr%-aO as R — oo,

It is now clear that letting p— 0 and R - o yields

) f cos(ar) E i L (b - a).
. r

This is the desired integration formula, with the variable of integration r instead of x.
Observe that when a =0 and b =2, that result becomes

el

) X

But cos(2x) =1~ 2sin? x, and we arrive at

dx ==,

j:sinzx n
2
e X 2




(\E% 21

78D Let us use the function

(logz)? ( n 3z
) = S 121> 0, - = <argz < 2~
f(2) Z 1 z 2<‘xrg<,<2)
and the contour in Exercise 2 to show that
2 3 Lod
-(l—l;‘«L dv="_ and J_{z{‘_}'_ dx=0
o X +1 8 o X +1

Integrating f(z) around the closed path shown in Exercise 2, we have
f@dz+ [ fydz=2mi Resf@)- [ f@de-[ fya.

Since

2
L Z+i

the point z=i is a simple pole of f(z) and the residue is

_ ._.(lo,gi)’_(lnl-o-in'/2)2___l2
e 8

Also, the parametric representations

Liz=ré®=r(p<r<R) and - 2e=re"=—r(p<r<R)

enablc us to write

flnr+im)?
J f(z)dz=]: Inr)’ dr and J f(2)dz= —r'z +1 dr

p

Since X 2 R g R Iny
0 g 2 [ v 2mi dr
=2 dar—m 2 ’
J f@z+ [, sz { £XT ;[rz = { o
then,

|

I(mr) Y j‘“’ d,_————j f@ydz=[ f()dz.
P
14

Equating real parts on each side of this equation, we have

R 3
(Inr)? 2 {2 o _Re[ f2)dz-Re| f(2)dz:
Ir +1d, £r2+l 4 IC' jc‘

and equating imaginary parts yields

@



R
Inr - B
27:{ Fdr=Im fc, f@)dz~Tm jC‘ f@)dz.
Itis straightforward to show that

lim [ f(2)dz=0 and i

R

[ f@az=o.

Hence
(Inr)? o dr ___7(_3
2;!‘,'%1 of jr2+l 4
and
T lnr
Zﬂ!ﬁl—dr 0
Finally, inasmuch'as (see Exercise 1, Sec. 79),
t ar _r
. r+1 2
We arrive at the desired integration formulas,
S. Here we evaluate the integral *\VL_.dx, Where a>p> We consider the
o (x+a)(x+ b)
function
l
2" €Xp 3“‘083
(“)=\=\ 12>0,0 < ar 227
i @+aXz+8) " (z¥a)z3) { b

ple closed contour showp below, which is simil
numbers p ang R are smali and Ja

ar to the on
rge enough, respectiv,
Z==) are between the circles,

€ used in Sec, 77. The
ely, so that

the points z = -, and

Branch cur




A parametric representation for the upper cdge of the branch cut from p to R is z= re®
(p € r< R), and so the valuc of the integral of f'along that edge is

j‘ exp[—;—(lnr-f tOJ vr
P

R
(r+a)r+b) {(r+a)(r+b)

A representation for the lower edge from p tois R is z= re’™ (p < r<R). Hence the
value of the integral of f along that edge from R to p is

Rexp[%(lnr+i27r);l - Ve
T rvayrtt) '{(r+a)(r+b)r

According to the residue theorem, then,

t 3\/7: IZKIJR V—; e $
{-————-—(r+a)('_+ x jf(z)dz | [ r+é[f(z)dz—2m(B,+B,),
where
1
1 2 o
) =Resf(z)-exp[3 . a)]__exP[3(l"“+'”)]_ € Ya
~a+b a=B ek
and
1 1
exp[— log(—b)] ex [—(lnb+in‘} -
Bz=R°§.f(Z)= 3 |_ P 3 ) =e IJVE
L -b+a -b+a a-b '
Consequently,
R q 5
| — @i2x!3 \r _=_2ﬂie'"l3(W—W)
e o e [
Now
Vo 2m3pp
< 2np =
l @-p)b-p) p (a=D o= )-—>0 as p— 0
and

VR 2R
—_— AR — oo,
R-a)R-5) " = (R=aXR-D) ir“’o““ R

8 (z)dzls



Hence

< oo 2mie™* Va -b) " 2mi(Va - b)
2[ +a)(r+b) ek (l m;n)(a b) g (eixn__e-ixl:i)(a_b)

2{a-b) _ n¥a-¥b) 27 Va-Vb

“sin(n/3)a-b) g(a_b) "B Ta-b

Replacing the variable of integration r here by x, we have the desired result:

_Nx 2w VeV (@>b>0).
(x+a)(x +b) V3 a-b

© Gy 8

@ (a) "Let us first use the branch

l
2 exp(-~logz)
2 b4 37:)
z— - 121>0, -~ <argz < 22
i re 2 +1 ( ‘ 2 “MBI=
and the indented path shown below to evaluate the improper integral

I__i"__
cx (1)

R

-R -P QO P R > o

Branch cut

Cauchy's residue thcorem tells us that

L, f@)de+ J;-, f(@)dz+ L: fl2)dz + L‘, f)dz =2ni Ef,sf(Z)‘
or

[, f@ydz+ [ f@dz=2mi Res f(2)~ fc, f@dz= [ f@)dz.



Since

l'z...“[‘e =r <r< —1 'Z— = - S
. (p-.’_R) and 2 =re = r(p<_r R),

[, fydz+ |, 1z =

R
dr . dr &
—_——f . d
l‘/’—'("z +1) l!,-vl'(rz +1) « —1);{\/’_.(’2"_.. 1)
Thus
=i R__i’____ R
’)l[\/;(,.z,,,)‘2”’[33“f(z)".{c,f(2)"z‘L f@)dz.

Now the point z =i is evidently a simple pole of f(z), with residue

2i 2i 2i 2i

exp[-—l logi] cxp['— ; [ln 1+ ‘Zt_)]
212 -ini4 i
RS-Sf(Z)=lL :l = 2 = . 2 oS l(l l).

2+ = 2

Furthermore,

np ___n\/ﬁ
_[C‘f(z)dzls Jp0-p) 1-9° —0as p—0

and
R n

(R-1) (,1
NR| R -

| jc. f(2)dz|s )—> 0 as R— oo,

Finally, then, we have
f dr a(l=1)
1 - = y
: ')£ Jroi+) V2

which is the same as

j dx b4
Sx(xP 41 V2

T dx
(b) To evaluate the improper integral |-m=-—5—-—, we now use the branch
;[ vx (x*+1)

-1 cxp(—%logz)
f@)=5—=

&g 2

— = (1z1>0,0<argz < 2m)
- +1 2 +1



p S g~

C, and C,.

Branch cut

X

Since a parametric representation for the u

pper cdge of the branch cut from pPloRis
re (DS r<R), the value of the integr

al of falong that edge is

2=
<

Rexpr—%(ln r+ iO)J &
J—%
P

d
P+ p\//_'(r2+l) '

A representation for the lower cdge from p tois R is (p<r<R), and so the value of
the integral of f along that edge from R to pis

1
R expl'——w~(lnr+i27t)] R R
: 5 “dr = —e"”I - ]2 dr =f
3 r?+1 SVr(rt +1) 2

!
e

Hence, by the residue theorem,

R 1 a f 1 - .
[ [ [ peiyars reancs s

where

exp[ ! logiJ exp‘: l(lnh-i”n
-2 = 5 5 -int4
B,=l§cs/‘(z)={z } 12 2 2)| e

Y 2 2 DY
and
1
s exp —i]og(—i) exp| —— lnH—iZ’—r iz
B, =Res f(z)=| % = ) & 2 2 ),
R z~i] ~2i N -2 B

2




That is,
2’; ) - re ™ —€ anidy sf(z_)dz- jf(z)dz.
\[;("1 +1) G Cr
Since - \’5
2np
< = ——— Y Qas p— 0
and 2
T _50as Roe

,____f___..—-

\l..! feoe|< 75 (R’ (R(R_lR)

we now find that
e—inH _e-i]kI'l c—u‘xld +e-i1nldelu

r |
——dr="= =7
!, N 2

(38

i ml4+ —inld ”cog(n)= n
2 4) 7

When x, instead of r, is used as the variable of integration here, we have the desired

result:

'I dx _x
oxl;(xz +1) 2

&, \ ; ( P79 270
6(r 1)~ ijqu“*f 4
(&)
¢ _~ X0

. =%
L 5 At Tt ed 77
=1 (7— '(‘() - t:l__:(!.“: "5:(

—{: ¥ 4!

S (P1)7






Write

)5+ 4sind ¢ g rd z-2 | & 22 +5iz-2
atic formula tells us that the
z=-il2and z=—2i. The point

the far right here are
C; and the point 2= -2i is exterior 10 C. Thus

is the positively oriented unit circle 12=1.
points of the integrand on
imple pole interior 10

1
_..—d—o—-—-=2wi ROSK-_-E——L"—-X-’-ZMK:——I—"X =2m‘(—1-:)= -2—7'"
27 +5iz— 2 Az + 5ilm-inn 3i 3

) S+ 4sin® meil2

where C
sin
z=-il2isas

<

2. To evaluate the definite integral in question, write

] dO _I 1
_,1+sin’8 cl.’_(z—z")’ #

1. This circle is shown below.

circle \zl=

where C is the positively oriented unit




Solving the equation (z*)* —6(z")+1=0 for z* with the aid of the quadratic formula, we
find that the zeros of the polynomial z* -6z +1 are the numbers z such that z2 = 3+2+2.

Those zeros are, then, z= +V3+2v2 and z= +y3-2v2. The first two of these zeros are
exterior to the circle, and the second two are inside of it. So the singularities of the

integrand in our contour integral are
Z; =V3-2‘\/-2- and ==z,

indicated in the figure. This means that

x
dé .
1';1+sin’ g~ BAFE),
where
4iz 4iz i i i
= Res = 1l = = —
B =y 7' —-62° +1 4zl’-12zl 212_3 (3-21[2—)-3 m
and
4iz -4iz, i ;
= Res = 1 & -
B, ==z 7% —62% +1 -4:;" +122, 7-12 =3 72 i
Since
i i 2 2
27i(B, + = 2m’(- : )= : -
Bl Bz) 75- W‘ W \/iﬂ',
the desired result is
t de
i it ci = iew of the binomial formula (Sec. 3)
Let C be the positively oriented unit circle jzl=1. Inview

-z Y dz___ 1 I (e=2) dz
—-2—'.—‘ ’i'z"‘zzm(_l)-i c z

]sinh edg-_--;-jsm"' 9d9=—;'jc(
s -%

n (2n a5 -1
1 -k ~l\k dz
- g1

n (2n n=2k-
- Z(k)('”'kzz e

= 22n+1 (_1)l i o



Now each of these last integrals has value zero except when k=n:

f 2 dz =2,
Consequently,
finmgaae__ L QmI(=1"2z  (@2n)
sin*" 640 = . =
! 22n+l (_l)n' (’l !)1 22u (n !)2 ®.
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Evaluation of definite integrals from dumbbell contours

Pavel M. Lushnikov
Department of Mathematics and Statistics, University of New Mexico, Albuquerque, New Mezxico, USA
(Dated: Fall 2024)

We consider the definite integrals of the S-function type

I_j(lfw)aR(a:)dz, l<a<l, (1)
0

where R(x) is the rational function such that it does not have poles at the closed interval z € [0, 1] and

R(z) — const for x — oo. (2)

To evaluate (1) we extend its integrand into the complex plane z € C as follows

o= (1) & 3)

1—=2

and define a branch cut at the segment of the real line [0, 1] which connects branch point z = 0 and z = 1 of f(z).
Then we choose the branch of f(z) such that

f(x+1i0) = f(x) >0 for 0<z<l (4)

Here and below z + i0 and z — {0 means the limit ¢ — 07, € > 0 for = + ic and = — i¢, respectively.

To obtain f(z —i0), 0 < x < 1 we move from z+1i0, 0 < x < 1 to x —i0, 0 < & < 1 either around the branch point
z = 0 in the counterclockwise (positive) direction on the angle 27 thus adding 27« to the argument of f(z) from z¢
factor in (3) or around the branch point z = 1 in the clockwise (negative) direction on the angle —27 thus adding
—2m(—a) = 2w to the argument of f(z) from (1 — z)~* factor in (3). Thus in both cases

flx —i0) = ™ f(x +i0) for O<z<l. (5)

It also proves that f(z) is analytic in C\ [0, 1].

/Lf\
)

o

FIG. 1. Dumbbell contour.

We integrate over a dumbbell contour shown in Fig. 1 consisting of the line segments Ly : [1 — p — 30, p — i0],
Ly : [p+10,p+i0] and the circles C, : [2[ =1, C}: [1— 2| =1 with 0 < p < 1. Here p is chosen small enough such



that now poles of R(z) are in interior or on of any of these two circles. It implies that all poles of R(z) are exterior
to to the dumbbell contour I', := L; UC, U Ly U C/’). Then the residue theorem implies that

> Res.—., f(z) + Res.—s0 f(z)] , (6)

= /f(z)dz = 27i
£, k=1

where z1, ..., z, are the residues of f(z) for z € C
The definition of I', and (5) also imply that

Ip:/f(z)dz:/f(z)dz+/f(z)dz+/f(z)dz+/f(z)dz
r, Ly ¢, Ly ¢

—i0 1—p+i0
/ f(z dz+/f )dz + / dz—i—/f
1—p—i0 p+i0
p+i0 1—p+i0
= ¢ / dz—l—/f dz + / f(z)dz+/f(z)dz (7)
1—p+i0 p+i0 c

We prove that lim [ f(z)dz = 0 as follows:
p—>00p

/f )dz=0 </|f Hdz|< /|dz|f27r ) - —0asp— 0"

ICol 1Col
because —1 < av < 1. Here M; = max |R(z)| and |C,| means that the integral is taken is the positive direction. In a

similar way we prove that hr% J f dz =0.
C/
Thus taking the limit p — OJr in (7) and using (6) we obtain that

I= Z Res,—,, f(2) + Resz_oof(z)] ) (8)

k=1

1 _ gizra 2mi

To find Res,—c0f(2) we consider the Laurent series of f(z) at z = oo by first finding Laurent series for R(z) and
q(z) := (lfz) . For R(z) we use (2) to obtain the Laurent series

C_1 C_9o
R(z):co+7+272+...,|z|>Ro, (9)

where Ry > 0 is chosen to be large nought such that all finite poles of R(z) are located in |z| < Ry.
For ¢(z) we obtain that

q(z)z(lzz>a:(—11i>u=em”(1li)az“”[1+ +. } EESt (10)

where we used the Taylor series for w = % and we moved from z = 2+ 40, 0 < x < 1 to 2z = & > 1 by moving
around the branch point z = 1 in the negative direction on the argument — around the branch point (1 — z)~®Phe
thus accumulating an addition to the argument of ¢(z) as (—m)(—a) = 7« thus giving the factor ™.

Combining (9) and (10) we obtain the Laurent series for f(z) as

o acy + c_
f(z) = R(2)q(z) =€ {co S } |2 > R, (11)
which gives that
Res,—oo f(2) = =€ (aco + c_1). (12)

Together with (8) and (12) we thus evaluate the definite integral (1).



