EXERCISES

1. Show that

(a)
$$(1+i)^i = \exp\left(-\frac{\pi}{4} + 2n\pi\right) \exp\left(i\frac{\ln 2}{2}\right)$$
 $(n = 0, \pm 1, \pm 2, ...);$
(b) $(-1)^{1/\pi} = e^{(2n+1)i}$ $(n = 0, \pm 1, \pm 2, ...).$

2. Find the principal value of

(a)
$$i^{i}$$
; (b) $\left[\frac{e}{2}(-1-\sqrt{3}i)\right]^{3\pi i}$; (c) $(1-i)^{4i}$.
Ans. (a) $\exp(-\pi/2)$; (b) $-\exp(2\pi^{2})$; (c) $e^{\pi}[\cos(2\ln 2) + i\sin(2\ln 2)]$

- **3.** Use definition (1), Sec. 33, of z^c to show that $(-1 + \sqrt{3}i)^{3/2} = \pm 2\sqrt{2}$.
- 4. Show that the result in Exercise 3 could have been obtained by writing
 - (a) $(-1 + \sqrt{3}i)^{3/2} = [(-1 + \sqrt{3}i)^{1/2}]^3$ and first finding the square roots of $-1 + \sqrt{3}i$; (b) $(-1 + \sqrt{3}i)^{3/2} = [(-1 + \sqrt{3}i)^3]^{1/2}$ and first cubing $-1 + \sqrt{3}i$.
- 5. Show that the *principal* nth root of a nonzero complex number z_0 that was defined in Sec. 9 is the same as the principal value of $z_0^{1/n}$ defined by equation (5), Sec. 33.
- 6. Show that if $z \neq 0$ and a is a real number, then $|z^a| = \exp(a \ln |z|) = |z|^a$, where the principal value of $|z|^a$ is to be taken.
- 7. Let c = a + bi be a fixed complex number, where c ≠ 0, ±1, ±2,..., and note that i^c is multiple-valued. What additional restriction must be placed on the constant c so that the values of |i^c| are all the same?
 Ans. c is real.
- 8. Let c, c_1, c_2 , and z denote complex numbers, where $z \neq 0$. Prove that if all of the powers involved are principal values, then

(a)
$$z^{c_1} z^{c_2} = z^{c_1+c_2}$$
; (b) $\frac{z^{c_1}}{z^{c_2}} = z^{c_1-c_2}$; (c) $(z^c)^n = z^{c_n}$ $(n = 1, 2, ...)$.

9. Assuming that f'(z) exists, state the formula for the derivative of $c^{f(z)}$.

34. TRIGONOMETRIC FUNCTIONS

Euler's formula (Sec. 6) tells us that

$$e^{ix} = \cos x + i \sin x$$
 and $e^{-ix} = \cos x - i \sin x$

for every real number x. Hence

$$e^{ix} - e^{-ix} = 2i\sin x$$
 and $e^{ix} + e^{-ix} = 2\cos x$.

That is,

$$\sin x = \frac{e^{ix} - e^{-ix}}{2i}$$
 and $\cos x = \frac{e^{ix} + e^{-ix}}{2}$.