SEC. 35

In view of the periodicity of sin z and cos z, it follows immediately from relaions (4) that sinh z and cosh z are periodic with period $2\pi i$. Relations (4), together with statements (17) and (18) in Sec. 34, also tell us that

(14)
$$\sinh z = 0$$
 if and only if $z = n\pi i$ $(n = 0, \pm 1, \pm 2, ...)$

and

(15)
$$\cosh z = 0$$
 if and only if $z = \left(\frac{\pi}{2} + n\pi\right)i$ $(n = 0, \pm 1, \pm 2, ...).$

The hyperbolic tangent of z is defined by means of the equation

(16)
$$\tanh z = \frac{\sinh z}{\cosh z}$$

and is analytic in every domain in which $\cosh z \neq 0$. The functions $\coth z$, $\operatorname{sech} z$, and $\operatorname{csch} z$ are the reciprocals of $\tanh z$, $\cosh z$, and $\sinh z$, respectively. It is straightforward to verify the following differentiation formulas, which are the same as those established in calculus for the corresponding functions of a real variable:

(17)
$$\frac{d}{dz} \tanh z = \operatorname{sech}^2 z, \qquad \frac{d}{dz} \coth z = -\operatorname{csch}^2 z,$$

(18)
$$\frac{d}{dz}\operatorname{sech} z = -\operatorname{sech} z \tanh z, \quad \frac{d}{dz}\operatorname{csch} z = -\operatorname{csch} z \operatorname{coth} z.$$

EXERCISES

- 1. Verify that the derivatives of $\sinh z$ and $\cosh z$ are as stated in equations (2), Sec. 35.
- 2. Prove that $\sinh 2z = 2 \sinh z \cosh z$ by starting with
 - (a) definitions (1), Sec. 35, of $\sinh z$ and $\cosh z$;
 - (b) the identity $\sin 2z = 2 \sin z \cos z$ (Sec. 34) and using relations (3) in Sec. 35.
- **3.** Show how identities (6) and (8) in Sec. 35 follow from identities (9) and (6), respectively, in Sec. 34.
- 4. Write $\sinh z = \sinh(x + iy)$ and $\cosh z = \cosh(x + iy)$, and then show how expressions (9) and (10) in Sec. 35 follow from identities (7) and (8), respectively, in that section.
- 5. Verify expression (12), Sec. 35, for $|\cosh z|^2$.
- 6. Show that $|\sinh x| \le |\cosh z| \le \cosh x$ by using
 - (a) identity (12), Sec. 35;

(b) the inequalities $|\sinh y| \le |\cos z| \le \cosh y$, obtained in Exercise 9(b), Sec. 34.

- 7. Show that
 - (a) $\sinh(z + \pi i) = -\sinh z$; (b) $\cosh(z + \pi i) = \cosh z$;
 - (c) $\tanh(z + \pi i) = \tanh z$.

112 Elementary Functions

- 8. Give details showing that the zeros of $\sinh z$ and $\cosh z$ are as in statements (14) and (15), Sec. 35.
- **9.** Using the results proved in Exercise 8, locate all zeros and singularities of the hyperbolic tangent function.
- 10. Derive differentiation formulas (17), Sec. 35.
- 11. Use the reflection principle (Sec. 28) to show that for all z, (a) $\overline{\sinh z} = \sinh \overline{z};$ (b) $\overline{\cosh z} = \cosh \overline{z}.$
- 12. Use the results in Exercise 11 to show that $\overline{\tanh z} = \tanh \overline{z}$ at points where $\cosh z \neq 0$.
- 13. By accepting that the stated identity is valid when z is replaced by the real variable x and using the lemma in Sec. 27, verify that

(a) $\cosh^2 z - \sinh^2 z = 1$; (b) $\sinh z + \cosh z = e^z$.

[Compare with Exercise 4(b), Sec. 34.]

- 14. Why is the function $\sinh(e^z)$ entire? Write its real component as a function of x and y, and state why that function must be harmonic everywhere.
- **15.** By using one of the identities (9) and (10) in Sec. 35 and then proceeding as in Exercise 15, Sec. 34, find all roots of the equation

(a)
$$\sinh z = i$$
; (b) $\cosh z = \frac{1}{2}$.
Ans. (a) $z = \left(2n + \frac{1}{2}\right)\pi i$ ($n = 0, \pm 1, \pm 2, ...$);
(b) $z = \left(2n \pm \frac{1}{3}\right)\pi i$ ($n = 0, \pm 1, \pm 2, ...$).

16. Find all roots of the equation $\cosh z = -2$. (Compare this exercise with Exercise 16, Sec. 34.)

Ans. $z = \pm \ln(2 + \sqrt{3}) + (2n + 1)\pi i \ (n = 0, \pm 1, \pm 2, \ldots).$

36. INVERSE TRIGONOMETRIC AND HYPERBOLIC FUNCTIONS

Inverses of the trigonometric and hyperbolic functions can be described in terms of logarithms.

In order to define the inverse sine function $\sin^{-1} z$, we write

$$w = \sin^{-1} z$$
 when $z = \sin w$.

That is, $w = \sin^{-1} z$ when

$$z = \frac{e^{iw} - e^{-iw}}{2i}.$$

If we put this equation in the form

$$(e^{iw})^2 - 2iz(e^{iw}) - 1 = 0,$$