In view of the periodicity of $\sin z$ and $\cos z$, it follows immediately from relaions (4) that sinh *z* and cosh *z* are periodic with period $2\pi i$. Relations (4), together with statements (17) and (18) in Sec. 34, also tell us that

(14)
$$
\sinh z = 0 \quad \text{if and only if} \quad z = n\pi i \ (n = 0, \pm 1, \pm 2, \ldots)
$$

and

(15)
$$
\cosh z = 0
$$
 if and only if $z = \left(\frac{\pi}{2} + n\pi\right)i$ $(n = 0, \pm 1, \pm 2, ...).$

The hyperbolic tangent of ζ is defined by means of the equation

(16)
$$
\tanh z = \frac{\sinh z}{\cosh z}
$$

and is analytic in every domain in which $\cosh z \neq 0$. The functions $\coth z$, $\sech z$, and csch *z* are the reciprocals of tanh *z*, cosh *z*, and sinh *z*, respectively. It is straightforward to verify the following differentiation formulas, which are the same as those established in calculus for the corresponding functions of a real variable:

(17)
$$
\frac{d}{dz} \tanh z = \operatorname{sech}^{2} z, \qquad \frac{d}{dz} \coth z = -\operatorname{csch}^{2} z,
$$

(18)
$$
\frac{d}{dz} \operatorname{sech} z = -\operatorname{sech} z \tanh z, \quad \frac{d}{dz} \operatorname{csch} z = -\operatorname{csch} z \coth z.
$$

EXERCISES

- **1.** Verify that the derivatives of sinh *z* and cosh *z* are as stated in equations (2), Sec. 35.
- **2.** Prove that $\sinh 2z = 2 \sinh z \cosh z$ by starting with
	- (*a*) definitions (1), Sec. 35, of sinh *z* and cosh *z*;
	- *(b)* the identity $\sin 2z = 2 \sin z \cos z$ (Sec. 34) and using relations (3) in Sec. 35.
- **3.** Show how identities (6) and (8) in Sec. 35 follow from identities (9) and (6), respectively, in Sec. 34.
- **4.** Write $\sinh z = \sinh(x + iy)$ and $\cosh z = \cosh(x + iy)$, and then show how expressions (9) and (10) in Sec. 35 follow from identities (7) and (8), respectively, in that section.
- **5.** Verify expression (12), Sec. 35, for $|\cosh z|^2$.
- **6.** Show that $|\sinh x| \leq |\cosh z| \leq \cosh x$ by using
	- *(a)* identity (12), Sec. 35;
	- *(b)* the inequalities $|\sinh y| \leq |\cos z| \leq \cosh y$, obtained in Exercise 9*(b)*, Sec. 34.
- **7.** Show that
	- (a) sinh $(z + \pi i) = -\sinh z$; (b) cosh $(z + \pi i) = \cosh z$;
	- (c) tanh $(z + \pi i) = \tanh z$.

112 ELEMENTARY FUNCTIONS CHAP. 3

- **8.** Give details showing that the zeros of sinh *z* and cosh *z* are as in statements (14) and (l5), Sec. 35.
- **9.** Using the results proved in Exercise 8, locate all zeros and singularities of the hyperbolic tangent function.
- **10.** Derive differentiation formulas (17), Sec. 35.
- **11.** Use the reflection principle (Sec. 28) to show that for all *z*, (a) $\overline{\sinh z} = \sinh \overline{z}$; *(b)* $\overline{\cosh z} = \cosh \overline{z}$.
- **12.** Use the results in Exercise 11 to show that $\tanh z = \tanh \overline{z}$ at points where $\cosh z \neq 0$.
- **13.** By accepting that the stated identity is valid when *z* is replaced by the real variable *x* and using the lemma in Sec. 27, verify that

 $(a) \cosh^2 z - \sinh^2 z = 1;$ *(b)* $\sinh z + \cosh z = e^z$.

[Compare with Exercise 4*(b)*, Sec. 34.]

- **14.** Why is the function $sinh(e^z)$ entire? Write its real component as a function of x and *y*, and state why that function must be harmonic everywhere.
- **15.** By using one of the identities (9) and (10) in Sec. 35 and then proceeding as in Exercise 15, Sec. 34, find all roots of the equation

(a)
$$
\sinh z = i
$$
; (b) $\cosh z = \frac{1}{2}$.
\n*Ans.* (a) $z = \left(2n + \frac{1}{2}\right)\pi i$ (n = 0, ±1, ±2,...);
\n(b) $z = \left(2n \pm \frac{1}{3}\right)\pi i$ (n = 0, ±1, ±2,...).

16. Find all roots of the equation cosh $z = -2$. (Compare this exercise with Exercise 16, Sec. 34.)

Ans. $z = \pm \ln(2 + \sqrt{3}) + (2n + 1)\pi i$ $(n = 0, \pm 1, \pm 2, \ldots)$.

36. INVERSE TRIGONOMETRIC AND HYPERBOLIC FUNCTIONS

Inverses of the trigonometric and hyperbolic functions can be described in terms of logarithms.

In order to define the inverse sine function sin−¹ *z*, we write

$$
w = \sin^{-1} z \quad \text{when} \quad z = \sin w.
$$

That is, $w = \sin^{-1} z$ when

$$
z=\frac{e^{iw}-e^{-iw}}{2i}.
$$

If we put this equation in the form

$$
(e^{iw})^2 - 2iz(e^{iw}) - 1 = 0,
$$