EXAMPLE 3. If a point z lies on the unit circle |z| = 1 about the origin, it follows from inequalities (7) and (8) that

$$|z - 2| \le |z| + 2 = 3$$

and

$$|z - 2| \ge ||z| - 2| = 1.$$

The triangle inequality (4) can be generalized by means of mathematical induction to sums involving any finite number of terms:

(10)
$$|z_1 + z_2 + \dots + z_n| \le |z_1| + |z_2| + \dots + |z_n|$$
 $(n = 2, 3, \dots)$

To give details of the induction proof here, we note that when n = 2, inequality (10) is just inequality (4). Furthermore, if inequality (10) is assumed to be valid when n = m, it must also hold when n = m + 1 since, by inequality (4),

$$|(z_1 + z_2 + \dots + z_m) + z_{m+1}| \le |z_1 + z_2 + \dots + z_m| + |z_{m+1}|$$

$$\le (|z_1| + |z_2| + \dots + |z_m|) + |z_{m+1}|.$$

EXERCISES

1. Locate the numbers $z_1 + z_2$ and $z_1 - z_2$ vectorially when

(a)
$$z_1 = 2i$$
, $z_2 = \frac{2}{3} - i$; (b) $z_1 = (-\sqrt{3}, 1)$, $z_2 = (\sqrt{3}, 0)$;
(c) $z_1 = (-3, 1)$, $z_2 = (1, 4)$; (d) $z_1 = x_1 + iy_1$, $z_2 = x_1 - iy_1$.

- **2.** Verify inequalities (3), Sec. 4, involving Re z, Im z, and |z|.
- **3.** Use established properties of moduli to show that when $|z_3| \neq |z_4|$,

$$\frac{\operatorname{Re}(z_1+z_2)}{|z_3+z_4|} \le \frac{|z_1|+|z_2|}{||z_3|-|z_4||}.$$

4. Verify that $\sqrt{2} |z| \ge |\operatorname{Re} z| + |\operatorname{Im} z|$.

Suggestion: Reduce this inequality to $(|x| - |y|)^2 \ge 0$.

5. In each case, sketch the set of points determined by the given condition:

(a) |z - 1 + i| = 1; (b) $|z + i| \le 3$; (c) $|z - 4i| \ge 4$.

- 6. Using the fact that $|z_1 z_2|$ is the distance between two points z_1 and z_2 , give a geometric argument that
 - (a) |z 4i| + |z + 4i| = 10 represents an ellipse whose foci are $(0, \pm 4)$;
 - (b) |z 1| = |z + i| represents the line through the origin whose slope is -1.