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a < t < b. This expression for T is the one learned in calculus when z(t) is inter-
preted as a radius vector. Such an arc is said to be smooth. In referring to a smooth
arc z = z(t) (a ≤ t ≤ b), then, we agree that the derivative z′(t) is continuous on the
closed interval a ≤ t ≤ b and nonzero throughout the open interval a < t < b.

A contour, or piecewise smooth arc, is an arc consisting of a finite number of
smooth arcs joined end to end. Hence if equation (2) represents a contour, z(t) is
continuous, whereas its derivative z′(t) is piecewise continuous. The polygonal line
(4) is, for example, a contour. When only the initial and final values of z(t) are
the same, a contour C is called a simple closed contour. Examples are the circles
(5) and (6), as well as the boundary of a triangle or a rectangle taken in a specific
direction. The length of a contour or a simple closed contour is the sum of the
lengths of the smooth arcs that make up the contour.

The points on any simple closed curve or simple closed contour C are boundary
points of two distinct domains, one of which is the interior of C and is bounded.
The other, which is the exterior of C, is unbounded. It will be convenient to accept
this statement, known as the Jordan curve theorem, as geometrically evident; the
proof is not easy.∗

EXERCISES
1. Show that if w(t) = u(t) + iv(t) is continuous on an interval a ≤ t ≤ b, then

(a)
∫ −a

−b

w(−t) dt =
∫ b

a

w(τ) dτ ;

(b)
∫ b

a

w(t) dt =
∫ β

α

w[φ(τ)]φ′(τ ) dτ , where φ(τ) is the function in equation (9),

Sec. 39.

Suggestion: These identities can be obtained by noting that they are valid for
real-valued functions of t .

2. Let C denote the right-hand half of the circle |z| = 2, in the counterclockwise direction,
and note that two parametric representations for C are

z = z(θ) = 2 eiθ

(
− π

2
≤ θ ≤ π

2

)

and
z = Z(y) =

√
4 − y2 + iy (−2 ≤ y ≤ 2).

Verify that Z(y) = z[φ(y)], where

φ(y) = arctan
y√

4 − y2

(
− π

2
< arctan t <

π

2

)
.

∗See pp. 115–116 of the book by Newman or Sec. 13 of the one by Thron, both of which are cited
in Appendix 1. The special case in which C is a simple closed polygon is proved on pp. 281–285
of Vol. 1 of the work by Hille, also cited in Appendix 1.
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Also, show that this function φ has a positive derivative, as required in the conditions
following equation (9), Sec. 39.

3. Derive the equation of the line through the points (α, a) and (β, b) in the τ t plane that
are shown in Fig. 37. Then use it to find the linear function φ(τ) which can be used in
equation (9), Sec. 39, to transform representation (2) in that section into representation
(10) there.

Ans. φ(τ) = b − a

β − α
τ + aβ − bα

β − α
.

4. Verify expression (14), Sec. 39, for the derivative of Z(τ) = z[φ(τ)].
Suggestion: Write Z(τ) = x[φ(τ)] + iy[φ(τ)] and apply the chain rule for real-

valued functions of a real variable.

5. Suppose that a function f (z) is analytic at a point z0 = z(t0) lying on a smooth arc
z = z(t) (a ≤ t ≤ b). Show that if w(t) = f [z(t)], then

w′(t) = f ′[z(t)]z′(t)

when t = t0.
Suggestion: Write f (z) = u(x, y) + iv(x, y) and z(t) = x(t) + iy(t), so that

w(t) = u[x(t), y(t)] + iv[x(t), y(t)].

Then apply the chain rule in calculus for functions of two real variables to write

w′ = (uxx
′ + uyy

′ ) + i(vxx
′ + vyy

′ ),

and use the Cauchy–Riemann equations.

6. Let y(x) be a real-valued function defined on the interval 0 ≤ x ≤ 1 by means of the
equations

y(x) =
{
x3 sin(π/x) when 0 < x ≤ 1,

0 when x = 0.

(a) Show that the equation

z = x + iy(x) (0 ≤ x ≤ 1)

represents an arc C that intersects the real axis at the points z = 1/n (n = 1, 2, . . .)

and z = 0, as shown in Fig. 38.
(b) Verify that the arc C in part (a) is, in fact, a smooth arc.

Suggestion: To establish the continuity of y(x) at x = 0, observe that

0 ≤
∣∣∣ x3 sin

(π

x

)∣∣∣ ≤ x3

when x > 0. A similar remark applies in finding y′(0) and showing that y′(x) is con-
tinuous at x = 0.
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40. CONTOUR INTEGRALS

We turn now to integrals of complex-valued functions f of the complex variable z.
Such an integral is defined in terms of the values f (z) along a given contour C,
extending from a point z = z1 to a point z = z2 in the complex plane. It is, therefore,
a line integral ; and its value depends, in general, on the contour C as well as on
the function f . It is written

∫
C

f (z) dz or
∫ z2

z1

f (z) dz,

the latter notation often being used when the value of the integral is independent
of the choice of the contour taken between two fixed end points. While the integral
may be defined directly as the limit of a sum, we choose to define it in terms of a
definite integral of the type introduced in Sec. 38.

Suppose that the equation

z = z(t) (a ≤ t ≤ b)(1)

represents a contour C, extending from a point z1 = z(a) to a point z2 = z(b). We
assume that f [z(t)] is piecewise continuous (Sec. 38) on the interval a ≤ t ≤ b and
refer to the function f (z) as being piecewise continuous on C. We then define the
line integral, or contour integral, of f along C in terms of the parameter t :

∫
C

f (z) dz =
∫ b

a

f [z(t)]z′(t) dt.(2)

Note that since C is a contour, z′(t) is also piecewise continuous on a ≤ t ≤ b; and
so the existence of integral (2) is ensured.

The value of a contour integral is invariant under a change in the representation
of its contour when the change is of the type (11), Sec. 39. This can be seen by
following the same general procedure that was used in Sec. 39 to show the invariance
of arc length.




