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14 Complex Numbers chap. 1

An important identity relating the conjugate of a complex number z = x + iy

to its modulus is

z z = |z|2,(7)

where each side is equal to x2 + y2. It suggests the method for determining a
quotient z1/z2 that begins with expression (7), Sec. 3. That method is, of course,
based on multiplying both the numerator and the denominator of z1/z2 by z2, so
that the denominator becomes the real number |z2|2.

EXAMPLE 1. As an illustration,

−1 + 3i

2 − i
= (−1 + 3i)(2 + i)

(2 − i)(2 + i)
= −5 + 5i

|2 − i|2 = −5 + 5i

5
= −1 + i.

See also the example in Sec. 3.

Identity (7) is especially useful in obtaining properties of moduli from properties
of conjugates noted above. We mention that

|z1z2| = |z1||z2|(8)

and ∣∣∣∣z1

z2

∣∣∣∣ = |z1|
|z2| (z2 �= 0).(9)

Property (8) can be established by writing

|z1z2|2 = (z1z2)(z1z2) = (z1z2)(z1 z2) = (z1z1)(z2z2) = |z1|2|z2|2 = (|z1||z2|)2

and recalling that a modulus is never negative. Property (9) can be verified in a
similar way.

EXAMPLE 2. Property (8) tells us that |z2| = |z|2 and |z3| = |z|3. Hence if
z is a point inside the circle centered at the origin with radius 2, so that |z| < 2, it
follows from the generalized triangle inequality (10) in Sec. 4 that

|z3 + 3z2 − 2z + 1| ≤ |z|3 + 3|z|2 + 2|z| + 1 < 25.

EXERCISES
1. Use properties of conjugates and moduli established in Sec. 5 to show that

(a) z + 3i = z − 3i; (b) iz = −iz;

(c) (2 + i)2 = 3 − 4i; (d) |(2z + 5)(
√

2 − i)| = √
3 |2z + 5|.

2. Sketch the set of points determined by the condition

(a) Re(z − i) = 2; (b) |2z + i| = 4.
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3. Verify properties (3) and (4) of conjugates in Sec. 5.

4. Use property (4) of conjugates in Sec. 5 to show that

(a) z1z2z3 = z1 z2 z3 ; (b) z4 = z4.

5. Verify property (9) of moduli in Sec. 5.

6. Use results in Sec. 5 to show that when z2 and z3 are nonzero,

(a)

(
z1

z2z3

)
= z1

z2 z3
; (b)

∣∣∣∣ z1

z2z3

∣∣∣∣ = |z1|
|z2||z3| .

7. Show that
|Re(2 + z + z3)| ≤ 4 when |z| ≤ 1.

8. It is shown in Sec. 3 that if z1z2 = 0, then at least one of the numbers z1 and z2 must
be zero. Give an alternative proof based on the corresponding result for real numbers
and using identity (8), Sec. 5.

9. By factoring z4 − 4z2 + 3 into two quadratic factors and using inequality (8), Sec. 4,
show that if z lies on the circle |z| = 2, then∣∣∣∣ 1

z4 − 4z2 + 3

∣∣∣∣ ≤ 1

3
.

10. Prove that

(a) z is real if and only if z = z;
(b) z is either real or pure imaginary if and only if z2 = z2.

11. Use mathematical induction to show that when n = 2, 3, . . . ,

(a) z1 + z2 + · · · + zn = z1 + z2 + · · · + zn; (b) z1z2 · · · zn = z1 z2 · · · zn.

12. Let a0, a1, a2, . . . , an (n ≥ 1) denote real numbers, and let z be any complex number.
With the aid of the results in Exercise 11, show that

a0 + a1z + a2z2 + · · · + anzn = a0 + a1z + a2z
2 + · · · + anz

n.

13. Show that the equation |z − z0| = R of a circle, centered at z0 with radius R, can be
written

|z|2 − 2 Re(zz0) + |z0|2 = R2.

14. Using expressions (6), Sec. 5, for Re z and Im z, show that the hyperbola x2 − y2 = 1
can be written

z2 + z2 = 2.

15. Follow the steps below to give an algebraic derivation of the triangle inequality (Sec. 4)

|z1 + z2| ≤ |z1| + |z2|.
(a) Show that

|z1 + z2|2 = (z1 + z2)(z1 + z2) = z1z1 + (z1z2 + z1z2) + z2z2.
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(b) Point out why
z1z2 + z1z2 = 2 Re(z1z2) ≤ 2|z1||z2|.

(c) Use the results in parts (a) and (b) to obtain the inequality

|z1 + z2|2 ≤ (|z1| + |z2|)2,

and note how the triangle inequality follows.

6. EXPONENTIAL FORM

Let r and θ be polar coordinates of the point (x, y) that corresponds to a nonzero
complex number z = x + iy. Since x = r cos θ and y = r sin θ , the number z can
be written in polar form as

z = r(cos θ + i sin θ).(1)

If z = 0, the coordinate θ is undefined; and so it is understood that z �= 0 whenever
polar coordinates are used.

In complex analysis, the real number r is not allowed to be negative and is the
length of the radius vector for z ; that is, r = |z|. The real number θ represents the
angle, measured in radians, that z makes with the positive real axis when z is inter-
preted as a radius vector (Fig. 6). As in calculus, θ has an infinite number of possible
values, including negative ones, that differ by integral multiples of 2π . Those values
can be determined from the equation tan θ = y/x, where the quadrant containing the
point corresponding to z must be specified. Each value of θ is called an argument
of z, and the set of all such values is denoted by arg z. The principal value of arg z,
denoted by Arg z, is that unique value � such that −π < � ≤ π . Evidently, then,

arg z = Arg z + 2nπ (n = 0, ±1, ±2, . . .).(2)

Also, when z is a negative real number, Arg z has value π , not −π .

x

y

z = x + iy

r

FIGURE 6

EXAMPLE 1. The complex number −1 − i, which lies in the third quadrant,
has principal argument −3π/4. That is,

Arg(−1 − i) = −3π

4
.




