An important identity relating the conjugate of a complex number $z = x + iy$ to its modulus is

$$
(7) \t\t\t\t z\overline{z} = |z|^2,
$$

where each side is equal to $x^2 + y^2$. It suggests the method for determining a quotient z_1/z_2 that begins with expression (7), Sec. 3. That method is, of course, based on multiplying both the numerator and the denominator of z_1/z_2 by $\overline{z_2}$, so that the denominator becomes the real number $|z_2|^2$.

EXAMPLE 1. As an illustration,

$$
\frac{-1+3i}{2-i} = \frac{(-1+3i)(2+i)}{(2-i)(2+i)} = \frac{-5+5i}{|2-i|^2} = \frac{-5+5i}{5} = -1+i.
$$

See also the example in Sec. 3.

Identity (7) is especially useful in obtaining properties of moduli from properties of conjugates noted above. We mention that

$$
(8) \t\t\t |z_1z_2| = |z_1||z_2|
$$

and

(9)
$$
\left| \frac{z_1}{z_2} \right| = \frac{|z_1|}{|z_2|} \quad (z_2 \neq 0).
$$

Property (8) can be established by writing

$$
|z_1 z_2|^2 = (z_1 z_2)(\overline{z_1 z_2}) = (z_1 z_2)(\overline{z_1} \overline{z_2}) = (z_1 \overline{z_1})(z_2 \overline{z_2}) = |z_1|^2 |z_2|^2 = (|z_1||z_2|)^2
$$

and recalling that a modulus is never negative. Property (9) can be verified in a similar way.

EXAMPLE 2. Property (8) tells us that $|z^2| = |z|^2$ and $|z^3| = |z|^3$. Hence if *z* is a point inside the circle centered at the origin with radius 2, so that $|z| < 2$, it follows from the generalized triangle inequality (10) in Sec. 4 that

$$
|z3 + 3z2 - 2z + 1| \le |z|3 + 3|z|2 + 2|z| + 1 < 25.
$$

EXERCISES

1. Use properties of conjugates and moduli established in Sec. 5 to show that

(a)
$$
\overline{z} + 3i = z - 3i
$$
;
\n(b) $i\overline{z} = -i\overline{z}$;
\n(c) $(2+i)^2 = 3 - 4i$;
\n(d) $|(2\overline{z} + 5)(\sqrt{2} - i)| = \sqrt{3}|2z + 5|$.

2. Sketch the set of points determined by the condition

(a) Re(
$$
\overline{z}
$$
 - i) = 2; (b) $|2\overline{z} + i|$ = 4.

- **3.** Verify properties (3) and (4) of conjugates in Sec. 5.
- **4.** Use property (4) of conjugates in Sec. 5 to show that (a) $\overline{z_1 z_2 z_3} = \overline{z_1} \overline{z_2} \overline{z_3}$; (b) $\overline{z^4} = \overline{z}^4$.
- **5.** Verify property (9) of moduli in Sec. 5.
- **6.** Use results in Sec. 5 to show that when z_2 and z_3 are nonzero,

$$
(a)\ \overline{\left(\frac{z_1}{z_2 z_3}\right)} = \frac{\overline{z_1}}{\overline{z_2}\,\overline{z_3}}\,;\qquad (b)\ \left|\frac{z_1}{z_2 z_3}\right| = \frac{|z_1|}{|z_2||z_3|}.
$$

7. Show that

$$
|\text{Re}(2+\overline{z}+z^3)| \le 4 \quad \text{when } |z| \le 1.
$$

- **8.** It is shown in Sec. 3 that if $z_1z_2 = 0$, then at least one of the numbers z_1 and z_2 must be zero. Give an alternative proof based on the corresponding result for real numbers and using identity (8), Sec. 5.
- **9.** By factoring $z^4 4z^2 + 3$ into two quadratic factors and using inequality (8), Sec. 4, show that if *z* lies on the circle $|z| = 2$, then

$$
\left|\frac{1}{z^4 - 4z^2 + 3}\right| \le \frac{1}{3}.
$$

- **10.** Prove that
	- *(a) z* is real if and only if $\overline{z} = z$;
	- *(b) z* is either real or pure imaginary if and only if $\overline{z}^2 = z^2$.
- **11.** Use mathematical induction to show that when $n = 2, 3, \ldots$,
	- (a) $\overline{z_1 + z_2 + \cdots + z_n} = \overline{z_1} + \overline{z_2} + \cdots + \overline{z_n};$ (b) $\overline{z_1 z_2 \cdots z_n} = \overline{z_1} \overline{z_2} \cdots \overline{z_n}.$
- **12.** Let $a_0, a_1, a_2, \ldots, a_n$ $(n \ge 1)$ denote *real* numbers, and let *z* be any complex number. With the aid of the results in Exercise 11, show that

$$
\overline{a_0 + a_1 z + a_2 z^2 + \dots + a_n z^n} = a_0 + a_1 \overline{z} + a_2 \overline{z}^2 + \dots + a_n \overline{z}^n.
$$

13. Show that the equation $|z - z_0| = R$ of a circle, centered at z_0 with radius R, can be written

$$
|z|^2 - 2\operatorname{Re}(z\overline{z_0}) + |z_0|^2 = R^2.
$$

14. Using expressions (6), Sec. 5, for Re *z* and Im *z*, show that the hyperbola $x^2 - y^2 = 1$ can be written

$$
z^2 + \overline{z}^2 = 2.
$$

15. Follow the steps below to give an algebraic derivation of the triangle inequality (Sec. 4)

$$
|z_1+z_2| \le |z_1| + |z_2|.
$$

(a) Show that

$$
|z_1 + z_2|^2 = (z_1 + z_2)(\overline{z_1} + \overline{z_2}) = z_1\overline{z_1} + (z_1\overline{z_2} + \overline{z_1z_2}) + z_2\overline{z_2}.
$$

(b) Point out why

$$
z_1\overline{z_2} + \overline{z_1\overline{z_2}} = 2\operatorname{Re}(z_1\overline{z_2}) \le 2|z_1||z_2|.
$$

(c) Use the results in parts *(a)* and *(b)* to obtain the inequality

$$
|z_1 + z_2|^2 \le (|z_1| + |z_2|)^2,
$$

and note how the triangle inequality follows.

6. EXPONENTIAL FORM

Let *r* and θ be polar coordinates of the point (x, y) that corresponds to a *nonzero* complex number $z = x + iy$. Since $x = r \cos \theta$ and $y = r \sin \theta$, the number *z* can be written in *polar form* as

(1)
$$
z = r(\cos \theta + i \sin \theta).
$$

If $z = 0$, the coordinate θ is undefined; and so it is understood that $z \neq 0$ whenever polar coordinates are used.

In complex analysis, the real number r is not allowed to be negative and is the length of the radius vector for *z*; that is, $r = |z|$. The real number θ represents the angle, measured in radians, that z makes with the positive real axis when z is interpreted as a radius vector (Fig. 6). As in calculus, θ has an infinite number of possible values, including negative ones, that differ by integral multiples of 2π . Those values can be determined from the equation tan $\theta = y/x$, where the quadrant containing the point corresponding to *z* must be specified. Each value of *θ* is called an *argument* of *z*, and the set of all such values is denoted by arg *z*. The *principal value* of arg *z*, denoted by Arg *z*, is that unique value Θ such that $-\pi < \Theta \leq \pi$. Evidently, then,

(2)
$$
\arg z = \text{Arg } z + 2n\pi \quad (n = 0, \pm 1, \pm 2, \ldots).
$$

Also, when *z* is a negative real number, Arg *z* has value π , not $-\pi$.

FIGURE 6

EXAMPLE 1. The complex number $-1 - i$, which lies in the third quadrant, has principal argument $-3\pi/4$. That is,

$$
Arg(-1 - i) = -\frac{3\pi}{4}.
$$