SEC. 45

Consequently, if the point $z + \Delta z$ is close enough to z so that $|\Delta z| < \delta$, then

$$\left|\frac{F(z+\Delta z)-F(z)}{\Delta z}-f(z)\right|<\frac{1}{|\Delta z|}\varepsilon|\Delta z|=\varepsilon;$$

that is,

$$\lim_{\Delta z \to 0} \frac{F(z + \Delta z) - F(z)}{\Delta z} = f(z),$$

or F'(z) = f(z).

EXERCISES

1. Use an antiderivative to show that for every contour C extending from a point z_1 to a point z_2 ,

$$\int_C z^n dz = \frac{1}{n+1} (z_2^{n+1} - z_1^{n+1}) \qquad (n = 0, 1, 2, \ldots)$$

2. By finding an antiderivative, evaluate each of these integrals, where the path is any contour between the indicated limits of integration:

(a)
$$\int_{i}^{i/2} e^{\pi z} dz$$
; (b) $\int_{0}^{\pi+2i} \cos\left(\frac{z}{2}\right) dz$; (c) $\int_{1}^{3} (z-2)^{3} dz$.
Ans. (a) $(1+i)/\pi$; (b) $e + (1/e)$; (c) 0.

3. Use the theorem in Sec. 44 to show that

$$\int_{C_0} (z - z_0)^{n-1} dz = 0 \qquad (n = \pm 1, \pm 2, \ldots)$$

when C_0 is any closed contour which does not pass through the point z_0 . [Compare with Exercise 10(b), Sec. 42.]

- **4.** Find an antiderivative $F_2(z)$ of the branch $f_2(z)$ of $z^{1/2}$ in Example 4, Sec. 44, to show that integral (6) there has value $2\sqrt{3}(-1+i)$. Note that the value of the integral of the function (5) around the closed contour $C_2 - C_1$ in that example is, therefore, $-4\sqrt{3}$.
- 5. Show that

$$\int_{-1}^{1} z^{i} dz = \frac{1 + e^{-\pi}}{2} (1 - i),$$

where the integrand denotes the principal branch

$$z^{i} = \exp(i \operatorname{Log} z) \qquad (|z| > 0, -\pi < \operatorname{Arg} z < \pi)$$

of z^i and where the path of integration is any contour from z = -1 to z = 1 that, except for its end points, lies above the real axis. (Compare with Exercise 7, Sec. 42.)

Suggestion: Use an antiderivative of the branch

$$z^{i} = \exp(i \log z)$$
 $\left(|z| > 0, -\frac{\pi}{2} < \arg z < \frac{3\pi}{2}\right)$

of the same power function.