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which f is analytic, then the value of the integral of f over C1 never changes. To
verify the corollary, we need only write equation (2) as∫

C2

f (z) dz +
∫

−C1

f (z) dz = 0

and apply the theroem.

EXAMPLE. When C is any positively oriented simple closed contour sur-
rounding the origin, the corollary can be used to show that∫

C

dz

z
= 2πi.

This is done by constructing a positively oriented circle C0 with center at the origin and
radius so small that C0 lies entirely inside C (Fig. 62). Since (see Example 2, Sec. 42)∫

C0

dz

z
= 2πi

and since 1/z is analytic everywhere except at z = 0, the desired result follows.
Note that the radius of C0 could equally well have been so large that C lies

entirely inside C0.
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FIGURE 62

EXERCISES
1. Apply the Cauchy–Goursat theorem to show that∫

C

f (z) dz = 0

when the contour C is the unit circle |z| = 1, in either direction, and when

(a) f (z) = z2

z − 3
; (b) f (z) = z e−z; (c) f (z) = 1

z2 + 2z + 2
;

(d) f (z) = sech z; (e) f (z) = tan z; ( f) f (z) = Log (z + 2).
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2. Let C1 denote the positively oriented boundary of the square whose sides lie along the
lines x = ±1, y = ±1 and let C2 be the positively oriented circle |z| = 4 (Fig. 63).
With the aid of the corollary in Sec. 49, point out why∫

C1

f (z) dz =
∫

C2

f (z) dz

when

(a) f (z) = 1

3z2 + 1
; (b) f (z) = z + 2

sin(z/2)
; (c) f (z) = z

1 − ez
.
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FIGURE 63

3. If C0 denotes a positively oriented circle |z − z0| = R , then∫
C0

(z − z0)
n−1 dz =

{0 when n = ±1,±2, . . . ,

2πi when n = 0,

according to Exercise 10(b), Sec. 42. Use that result and the corollary in Sec. 49 to
show that if C is the boundary of the rectangle 0 ≤ x ≤ 3, 0 ≤ y ≤ 2, described in
the positive sense, then∫

C

(z − 2 − i)n−1 dz =
{

0 when n = ±1,±2, . . . ,

2πi when n = 0.

4. Use the following method to derive the integration formula∫ ∞

0
e−x2

cos 2bx dx =
√

π

2
e−b2

(b > 0).

(a) Show that the sum of the integrals of e−z2
along the lower and upper horizontal

legs of the rectangular path in Fig. 64 can be written
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2
∫ a

0
e−x2

dx − 2eb2
∫ a

0
e−x2

cos 2bx dx

and that the sum of the integrals along the vertical legs on the right and left can
be written

ie−a2
∫ b

0
ey2

e−i2aydy − ie−a2
∫ b

0
ey2

ei2aydy.

Thus, with the aid of the Cauchy–Goursat theorem, show that∫ a

0
e−x2

cos 2bx dx = e−b2
∫ a

0
e−x2

dx + e−(a2+b2)

∫ b

0
ey2

sin 2ay dy.

(b) By accepting the fact that∗ ∫ ∞

0
e−x2

dx =
√

π

2

and observing that ∣∣∣∣
∫ b

0
ey2

sin 2ay dy

∣∣∣∣ ≤
∫ b

0
ey2

dy,

obtain the desired integration formula by letting a tend to infinity in the equation
at the end of part (a).

5. According to Exercise 6, Sec. 39, the path C1 from the origin to the point z = 1 along
the graph of the function defined by means of the equations

y(x) =
{
x3 sin (π/x) when 0 < x ≤ 1,

0 when x = 0

is a smooth arc that intersects the real axis an infinite number of times. Let C2 denote
the line segment along the real axis from z = 1 back to the origin, and let C3 denote
any smooth arc from the origin to z = 1 that does not intersect itself and has only its
end points in common with the arcs C1 and C2 (Fig. 65). Apply the Cauchy–Goursat
theorem to show that if a function f is entire, then∫

C1

f (z) dz =
∫

C3

f (z) dz and
∫

C2

f (z) dz = −
∫

C3

f (z) dz.

Conclude that even though the closed contour C = C1 + C2 intersects itself an infinite
number of times, ∫

C

f (z) dz = 0.

∗The usual way to evaluate this integral is by writing its square as∫ ∞

0
e−x2

dx

∫ ∞

0
e−y2

dy =
∫ ∞

0

∫ ∞

0
e−(x2+y2)dxdy

and then evaluating this iterated integral by changing to polar coordinates. Details are given in, for
example, A. E. Taylor and W. R. Mann, “Advanced Calculus,” 3d ed., pp. 680–681, 1983.
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6. Let C denote the positively oriented boundary of the half disk 0 ≤ r ≤ 1, 0 ≤ θ ≤ π ,
and let f (z) be a continuous function defined on that half disk by writing f (0) = 0
and using the branch

f (z) = √
reiθ/2

(
r > 0,−π

2
< θ <

3π

2

)

of the multiple-valued function z1/2. Show that∫
C

f (z) dz = 0

by evaluating separately the integrals of f (z) over the semicircle and the two radii
which make up C. Why does the Cauchy–Goursat theorem not apply here?

7. Show that if C is a positively oriented simple closed contour, then the area of the
region enclosed by C can be written

1

2i

∫
C

z dz.

Suggestion: Note that expression (4), Sec. 46, can be used here even though the
function f (z) = z is not analytic anywhere [see Example 2, Sec. 19].

8. Nested Intervals. An infinite sequence of closed intervals an ≤ x ≤ bn (n = 0, 1, 2, . . .)

is formed in the following way. The interval a1 ≤ x ≤ b1 is either the left-hand or
right-hand half of the first interval a0 ≤ x ≤ b0, and the interval a2 ≤ x ≤ b2 is then
one of the two halves of a1 ≤ x ≤ b1, etc. Prove that there is a point x0 which belongs
to every one of the closed intervals an ≤ x ≤ bn.

Suggestion: Note that the left-hand end points an represent a bounded nonde-
creasing sequence of numbers, since a0 ≤ an ≤ an+1 < b0 ; hence they have a limit
A as n tends to infinity. Show that the end points bn also have a limit B. Then show
that A = B, and write x0 = A = B.

9. Nested Squares. A square σ0 : a0 ≤ x ≤ b0, c0 ≤ y ≤ d0 is divided into four equal
squares by line segments parallel to the coordinate axes. One of those four smaller
squares σ1 : a1 ≤ x ≤ b1, c1 ≤ y ≤ d1 is selected according to some rule. It, in turn,
is divided into four equal squares one of which, called σ2, is selected, etc. (see Sec.
47). Prove that there is a point (x0, y0) which belongs to each of the closed regions
of the infinite sequence σ0, σ1, σ2, . . . .

Suggestion: Apply the result in Exercise 8 to each of the sequences of closed
intervals an ≤ x ≤ bn and cn ≤ y ≤ dn (n = 0, 1, 2, . . .).




