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which f is analytic, then the value of the integral of f over C1 never changes. To
verify the corollary, we need only write equation (2) as

f()dz + f()dz=0
Cy —C1

and apply the theroem.

EXAMPLE. When C is any positively oriented simple closed contour sur-
rounding the origin, the corollary can be used to show that

d
& 2.
c <
This is done by constructing a positively oriented circle Cq with center at the origin and
radius so small that Cy lies entirely inside C (Fig. 62). Since (see Example 2, Sec. 42)

d
e _ 2mi
Co <
and since 1/z is analytic everywhere except at z = 0, the desired result follows.
Note that the radius of Cq could equally well have been so large that C lies

entirely inside Co.
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FIGURE 62

EXERCISES
1. Apply the Cauchy—Goursat theorem to show that

/f(z)dzzo
c

when the contour C is the unit circle |z| = 1, in either direction, and when

Z2

(a) f(z)zz_—3; (b) f(2) =ze™5; (© f(Z):m;

(d) f(z) =sech z; (e) f(z) =tanz; (f) f(z) = Log (z + 2).
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2. Let Cy denote the positively oriented boundary of the square whose sides lie along the
lines x = +1, y = 41 and let C, be the positively oriented circle |z| = 4 (Fig. 63).
With the aid of the corollary in Sec. 49, point out why

f@dz= | f(2)dz
C1 Cy

when
@ f@ =577 O f@= %Z/ZZ) © £ = ——
y
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FIGURE 63

3. If Cy denotes a positively oriented circle |z — zo| = R, then

0 whenn = +1,42, ...,

_ n—1 _
(@—20)" " dz= {27'[1' when n =0,

Co

according to Exercise 10(b), Sec. 42. Use that result and the corollary in Sec. 49 to
show that if C is the boundary of the rectangle 0 < x < 3,0 <y < 2, described in
the positive sense, then

o1, _ [0 whenn=+1 42, ...,
/C(Z 2=10) dz_{zm, when n = 0.

4. Use the following method to derive the integration formula

N
e

© >
/ e " cos2bx dx = — b > 0).
0 2

(a) Show that the sum of the integrals of e 7 along the lower and upper horizontal
legs of the rectangular path in Fig. 64 can be written

—a+hi a+ bi

FIGURE 64
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a2 2 ¢ 2
2/ eV dx —2e / e " cos2bx dx
0 0
and that the sum of the integrals along the vertical legs on the right and left can

be written . )
L2 2 oy L2 2 o4y
ie / e ey —je@ / e e dy.
0 0

Thus, with the aid of the Cauchy—Goursat theorem, show that

42 w2 [ 2 242 boa
/ e " cos2bxdx = e~ / e dx +e @t )/ e’ sin2ay dy.
0 0 0

(b) By accepting the fact that*

and observing that

b
S/eydy,
0

obtain the desired integration formula by letting a tend to infinity in the equation
at the end of part (a).

5. According to Exercise 6, Sec. 39, the path C; from the origin to the point z = 1 along
the graph of the function defined by means of the equations

b,
/ e’ sin2aydy
0

_ Ix%sin(/x) when0<x <1,
e = {0 when x =0

is a smooth arc that intersects the real axis an infinite number of times. Let C, denote
the line segment along the real axis from z = 1 back to the origin, and let C3 denote
any smooth arc from the origin to z = 1 that does not intersect itself and has only its
end points in common with the arcs C; and C, (Fig. 65). Apply the Cauchy—Goursat
theorem to show that if a function f is entire, then

f(@ dz:/ f(z) dz and / f(@) dz:—/ f(2) dz.
C1 C3 C (&}

Conclude that even though the closed contour C = C1 + C intersects itself an infinite
number of times,

/f(z) dz =0.
c

*The usual way to evaluate this integral is by writing its square as

[ee] o0 o0 o0
/ e_)‘za'x/ e_-vzdy :/ / e_(xz*'-"z)a’xdy
0 0 o Jo

and then evaluating this iterated integral by changing to polar coordinates. Details are given in, for
example, A. E. Taylor and W. R. Mann, “Advanced Calculus,” 3d ed., pp. 680-681, 1983.



SEC. 49 Exercises 163

y
»Cs
c
JaWA /\ 2\\
ol 7Y VL 1 T X
3 2
c;
FIGURE 65

6. Let C denote the positively oriented boundary of the half disk 0 <r <1,0<6 < 7,
and let f(z) be a continuous function defined on that half disk by writing f(0) =0
and using the branch

f(Z)Z«/;ei‘)/z (r>0,—%<0<37ﬂ>

of the multiple-valued function z/2. Show that

/f(z)dzzo
c

by evaluating separately the integrals of f(z) over the semicircle and the two radii
which make up C. Why does the Cauchy—Goursat theorem not apply here?

7. Show that if C is a positively oriented simple closed contour, then the area of the
region enclosed by C can be written
1
— [ Zdz.
20 Jo 4
Suggestion: Note that expression (4), Sec. 46, can be used here even though the
function f(z) = 7 is not analytic anywhere [see Example 2, Sec. 19].

8. Nested Intervals. An infinite sequence of closed intervalsa, <x <b, (n =0,1,2,...)
is formed in the following way. The interval a; < x < by is either the left-hand or
right-hand half of the first interval ag < x < by, and the interval a, < x < b, is then
one of the two halves of a; < x < by, etc. Prove that there is a point xg which belongs
to every one of the closed intervals a, < x < b,,.

Suggestion: Note that the left-hand end points a, represent a bounded nonde-
creasing sequence of numbers, since ag < a, < a,+1 < bo; hence they have a limit
A as n tends to infinity. Show that the end points b, also have a limit B. Then show
that A = B, and write xo = A = B.

9. Nested Squares. A square op :ag < x < bg,co <y <dp is divided into four equal
squares by line segments parallel to the coordinate axes. One of those four smaller
squares oy ;a1 < x < b1, c1 <y <dj is selected according to some rule. It, in turn,
is divided into four equal squares one of which, called o>, is selected, etc. (see Sec.
47). Prove that there is a point (xo, yo) which belongs to each of the closed regions
of the infinite sequence oy, 01, 02, ... .

Suggestion: Apply the result in Exercise 8 to each of the sequences of closed
intervals a, <x <b,and ¢, <y<d,(n=0,1,2,...).





