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Theorem 3.  Suppose that a function f is analytic inside and on a positively
oriented circle Cg, centered at zp and with radius R (Fig. 69). If My denotes the
maximum value of |f(z)| on Cg, then
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Inequality (2) is called Cauchy’s inequality and is an immediate consequence
of the expression
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which is a slightly different form of equation (6), Sec. 51, when »n is a positive
integer. We need only apply the theorem in Sec. 43, which gives upper bounds for
the moduli of the values of contour integrals, to see that
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where My is as in the statement of Theorem 3. This inequality is, of course, the

same as inequality (2).

EXERCISES

1. Let C denote the positively oriented boundary of the square whose sides lie along the
lines x = £2 and y = 4+ 2. Evaluate each of these integrals:
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Ans. (a) 2; (b) mwi/4; () —mwi/2; (d)0; (€) imsec?(xo/2).

2. Find the value of the integral of g(z) around the circle |z — i| = 2 in the positive sense
when

1
@ g = m; (b) g(z) =

Ans. (a) 7/2; (b) 7/16.
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3. Let C be the circle |z| = 3, described in the positive sense. Show that if

§ =2z
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g<z>=/c¥ ds (21 #3),

then g(2) = 8xi. What is the value of g(z) when |z| > 3?

4. Let C be any simple closed contour, described in the positive sense in the z plane,
and write
$3 4 2s
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g(zx) =

Show that g(z) = 6wiz when z is inside C and that g(z) = 0 when z is outside.

5. Show that if f is analytic within and on a simple closed contour C and zg is not on
C, then

f'(2) dz _f f(z) dz
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6. Let f denote a function that is continuous on a simple closed contour C. Following
a procedure used in Sec. 51, prove that the function
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is analytic at each point z interior to C and that

do o L[ J®ds
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at such a point.
7. Let C be the unit circle z = ¢/ (—7 < @ < 7). First show that for any real constant «,
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Then write this integral in terms of 6 to derive the integration formula

T
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8. (a) With the aid of the binomial formula (Sec. 3), show that for each value of n, the
function "

2 n
-1 =0,1,2,...
n!Z,le,,(z ) (n=0,1,2,..)

Pn(z) =

is a polynomial of degree n.*

*These are Legendre polynomials, which appear in Exercise 7, Sec. 43, when z = x. See the footnote
to that exercise.
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(b) Let C denote any positively oriented simple closed contour surrounding a fixed
point z. With the aid of the integral representation (5), Sec. 51, for the nth deriva-
tive of a function, show that the polynomials in part (a) can be expressed in the
form

1 (SZ _ 1)n
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(c) Point out how the integrand in the representation for P,(z) in part (b) can be
written (s +1)"/(s — 1) if z = 1. Then apply the Cauchy integral formula to
show that

P, =1 n=0,1,2,..)).

Similarly, show that
P(-1)=(-=D" (=012...).
9. Follow these steps below to verify the expression

f”(Z) _ i f(s)ds
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in Sec. 51.
(a) Use expression (2) in Sec. 51 for f/(z) to show that

fle+A2)— @) 1 [ f(s)ds 1 3(s — 2)Az — 2(Az)?
- = = f(s)ds.
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(b) Let D and d denote the largest and smallest distances, respectively, from z to
points on C. Also, let M be the maximum value of | f(s)| on C and L the length
of C. With the aid of the triangle inequality and by referring to the derivation of
expression (2) in Sec. 51 for f’(z), show that when 0 < |Az| < d, the value of
the integral on the right-hand side in part (a) is bounded from above by

(3D|Az| + 2|AzP )M
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(c) Use the results in parts (a) and (b) to obtain the desired expression for f”(z).

10. Let f be an entire function such that |f(z)| < Al|z| for all z, where A is a fixed
positive number. Show that f(z) = a1z, where a; is a complex constant.
Suggestion: Use Cauchy’s inequality (Sec. 52) to show that the second deriva-
tive f”(z) is zero everywhere in the plane. Note that the constant Mk in Cauchy’s
inequality is less than or equal to A(|zo| + R).

53. LIOUVILLE’S THEOREM AND THE FUNDAMENTAL
THEOREM OF ALGEBRA

Cauchy’s inequality in Theorem 3 of Sec. 52 can be used to show that no entire
function except a constant is bounded in the complex plane. Our first theorem here,





