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EXERCISES
1. Use definition (2), Sec. 55, of limits of sequences to verify the limit of the sequence

zn (n = 1, 2, . . .) found in Example 2, Sec. 55.

2. Let �n (n = 1, 2, . . .) denote the principal arguments of the numbers

zn = 2 + i
(−1)n

n2
(n = 1, 2, . . .).

Point out why

lim
n→∞ �n = 0,

and compare with Example 2, Sec. 55.

3. Use the inequality (see Sec. 4) ||zn| − |z|| ≤ |zn − z| to show that

if lim
n→∞ zn = z , then lim

n→∞ |zn| = |z|.

4. Write z = reiθ , where 0 < r < 1, in the summation formula (10), Sec. 56. Then, with
the aid of the theorem in Sec. 56, show that

∞∑
n=1

rn cos nθ = r cos θ − r2

1 − 2r cos θ + r2
and

∞∑
n=1

rn sin nθ = r sin θ

1 − 2r cos θ + r2

when 0 < r < 1. (Note that these formulas are also valid when r = 0.)

5. Show that a limit of a convergent sequence of complex numbers is unique by appealing
to the corresponding result for a sequence of real numbers.

6. Show that

if
∞∑

n=1

zn = S, then
∞∑

n=1

zn = S.

7. Let c denote any complex number and show that

if
∞∑

n=1

zn = S, then
∞∑

n=1

czn = cS.

8. By recalling the corresponding result for series of real numbers and referring to the
theorem in Sec. 56, show that

if
∞∑

n=1

zn = S and
∞∑

n=1

wn = T , then
∞∑

n=1

(zn + wn) = S + T .

9. Let a sequence zn (n = 1, 2, . . .) converge to a number z. Show that there exists a
positive number M such that the inequality |zn| ≤ M holds for all n. Do this in each
of the following ways.

(a) Note that there is a positive integer n0 such that

|zn| = |z + (zn − z)| < |z| + 1

whenever n > n0.
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(b) Write zn = xn + iyn and recall from the theory of sequences of real numbers that
the convergence of xn and yn (n = 1, 2, . . .) implies that |xn| ≤ M1 and |yn| ≤ M2
(n = 1, 2, . . .) for some positive numbers M1 and M2.

57. TAYLOR SERIES

We turn now to Taylor’s theorem, which is one of the most important results of the
chapter.

Theorem. Suppose thata functionf is analytic throughoutadisk |z − z0| < R0 ,
centered at z0 and with radius R0 (Fig. 74). Then f (z) has the power series represen-
tation

f (z) =
∞∑

n=0

an(z − z0)
n (|z − z0| < R0),(1)

where

an = f (n)(z0)

n!
(n = 0, 1, 2, . . .).(2)

That is, series (1) converges to f (z) when z lies in the stated open disk.
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FIGURE 74

This is the expansion of f (z) into a Taylor series about the point z0. It is the
familiar Taylor series from calculus, adapted to functions of a complex variable.
With the agreement that

f (0)(z0) = f (z0) and 0! = 1,

series (1) can, of course, be written

f (z) = f (z0) + f ′(z0)

1!
(z − z0) + f ′′(z0)

2!
(z − z0)

2 + · · · (|z − z0| < R0).(3)




