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EXERCISES

1. Use definition (2), Sec. 55, of limits of sequences to verify the limit of the sequence
zn(n=1,2,...) found in Example 2, Sec. 55.

2. Let ®, (n=1,2,...) denote the principal arguments of the numbers

—1)"
w=2+i"L w=12..)
n

Point out why

lim ©, =0,

n—oo
and compare with Example 2, Sec. 55.
3. Use the inequality (see Sec. 4) ||z,| — |zl| < |z, — z| to show that

if limz,=z, then Ilim |z,|=|z|.
n—o0 n—0o0

4. Write z = re'?, where 0 < r < 1, in the summation formula (10), Sec. 56. Then, with
the aid of the theorem in Sec. 56, show that

> rcosf — r? > rsing
r*cosn) = —— and rtsinn = ————
nz_; 1—2rcosf + r? ; 1—2rcosé + r?

when 0 < r < 1. (Note that these formulas are also valid when r = 0.)

5. Show that a limit of a convergent sequence of complex numbers is unique by appealing
to the corresponding result for a sequence of real numbers.

6. Show that - -
if Y z,=5 then Y 7, =5

n=1 n=1

7. Let ¢ denote any complex number and show that

(o) o0
if Zz,, =S, then Zczn =cS.
n=1

n=1

8. By recalling the corresponding result for series of real numbers and referring to the
theorem in Sec. 56, show that

o0 o0 oo
if Zz,, =S and an =T, then Z(z,, +w,)=S+T.
n=1 n=1

n=1

9. Let a sequence z, (n =1,2,...) converge to a number z. Show that there exists a
positive number M such that the inequality |z,| < M holds for all n. Do this in each
of the following ways.

(a) Note that there is a positive integer ng such that
lznl =1z + (20 — D <zl +1

whenever n > ny.
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(b) Write z, = x, + iy, and recall from the theory of sequences of real numbers that
the convergence of x,, and y, (n = 1,2, ...) implies that |x,| < M and |y,| < M>
(n=1,2,...) for some positive numbers M; and M.

57. TAYLOR SERIES

We turn now to Taylor’s theorem, which is one of the most important results of the
chapter.

Theorem. Supposethatafunction f isanalytic throughoutadisk |z — zo| < Ro,
centered at zg and with radius R (Fig. 74). Then f(z) has the power series represen-
tation

@) f@ =Y anz—z0" (Iz—z0l < Ro),
n=0
where
(n)
) =1 anO) (n=0,1,2,...).

That is, series (1) converges to f(z) when z lies in the stated open disk.
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This is the expansion of f(z) into a Taylor series about the point zq. It is the
familiar Taylor series from calculus, adapted to functions of a complex variable.
With the agreement that

F@0) = f(zo) and 0!'=1,

series (1) can, of course, be written

! ﬁO) (z —z0) + f Z(!ZO)

(@) f@ = f(zo)+ (z—z20%4--- (lz—z0l < Ro).





