188 Series chap. 5

EXERCISES

- **1.** Use definition (2), Sec. 55, of limits of sequences to verify the limit of the sequence z_n ($n = 1, 2, ...$) found in Example 2, Sec. 55.
- **2.** Let Θ_n ($n = 1, 2, \ldots$) denote the principal arguments of the numbers

$$
z_n = 2 + i \frac{(-1)^n}{n^2} \quad (n = 1, 2, \ldots).
$$

Point out why

$$
\lim_{n\to\infty}\Theta_n=0,
$$

and compare with Example 2, Sec. 55.

3. Use the inequality (see Sec. 4) $||z_n| - |z|| \le |z_n - z|$ to show that

if
$$
\lim_{n \to \infty} z_n = z
$$
, then $\lim_{n \to \infty} |z_n| = |z|$.

4. Write $z = re^{i\theta}$, where $0 < r < 1$, in the summation formula (10), Sec. 56. Then, with the aid of the theorem in Sec. 56, show that

$$
\sum_{n=1}^{\infty} r^n \cos n\theta = \frac{r \cos \theta - r^2}{1 - 2r \cos \theta + r^2} \quad \text{and} \quad \sum_{n=1}^{\infty} r^n \sin n\theta = \frac{r \sin \theta}{1 - 2r \cos \theta + r^2}
$$

when $0 < r < 1$. (Note that these formulas are also valid when $r = 0$.)

- **5.** Show that a limit of a convergent sequence of complex numbers is unique by appealing to the corresponding result for a sequence of real numbers.
- **6.** Show that

if
$$
\sum_{n=1}^{\infty} z_n = S
$$
, then $\sum_{n=1}^{\infty} \overline{z_n} = \overline{S}$.

7. Let *c* denote any complex number and show that

if
$$
\sum_{n=1}^{\infty} z_n = S
$$
, then $\sum_{n=1}^{\infty} cz_n = cS$.

8. By recalling the corresponding result for series of real numbers and referring to the theorem in Sec. 56, show that

if
$$
\sum_{n=1}^{\infty} z_n = S
$$
 and $\sum_{n=1}^{\infty} w_n = T$, then $\sum_{n=1}^{\infty} (z_n + w_n) = S + T$.

- **9.** Let a sequence z_n $(n = 1, 2, ...)$ converge to a number *z*. Show that there exists a positive number *M* such that the inequality $|z_n| \leq M$ holds for all *n*. Do this in each of the following ways.
	- (*a*) Note that there is a positive integer n_0 such that

$$
|z_n| = |z + (z_n - z)| < |z| + 1
$$

whenever $n > n_0$.

(b) Write $z_n = x_n + iy_n$ and recall from the theory of sequences of real numbers that the convergence of x_n and y_n $(n = 1, 2, ...)$ implies that $|x_n| \le M_1$ and $|y_n| \le M_2$ $(n = 1, 2, ...)$ for some positive numbers M_1 and M_2 .

57. TAYLOR SERIES

We turn now to *Taylor's theorem,* which is one of the most important results of the chapter.

Theorem. Suppose that a function f is analytic throughout a disk $|z - z_0| < R_0$, *centered at* z_0 *and with radius* R_0 (Fig. 74). *Then* $f(z)$ *has the power series representation*

(1)
$$
f(z) = \sum_{n=0}^{\infty} a_n (z - z_0)^n \qquad (|z - z_0| < R_0),
$$

where

(2)
$$
a_n = \frac{f^{(n)}(z_0)}{n!} \qquad (n = 0, 1, 2, ...).
$$

That is, series (1) *converges to* $f(z)$ *when z lies in the stated open disk.*

This is the expansion of $f(z)$ into a *Taylor series* about the point z_0 . It is the familiar Taylor series from calculus, adapted to functions of a complex variable. With the agreement that

$$
f^{(0)}(z_0) = f(z_0)
$$
 and $0! = 1$,

series (1) can, of course, be written

(3)
$$
f(z) = f(z_0) + \frac{f'(z_0)}{1!}(z - z_0) + \frac{f''(z_0)}{2!}(z - z_0)^2 + \cdots
$$
 $(|z - z_0| < R_0).$