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If we substitute −z for z in equation (6) and its condition of validity, and note
that |z| < 1 when | − z| < 1, we see that

1

1 + z
=

∞∑
n=0

(−1)nzn (|z| < 1).

If, on the other hand, we replace the variable z in equation (6) by 1 − z, we
have the Taylor series representation

1

z
=

∞∑
n=0

(−1)n(z − 1)n (|z − 1| < 1).

This condition of validity follows from the one associated with expansion (6) since
|1 − z| < 1 is the same as |z − 1| < 1.

EXAMPLE 5. For our final example, let us expand the function

f (z) = 1 + 2z2

z3 + z5
= 1

z3
· 2(1 + z2) − 1

1 + z2
= 1

z3

(
2 − 1

1 + z2

)

into a series involving powers of z. We cannot find a Maclaurin series for f (z)

since it is not analytic at z = 0. But we do know from expansion (6) that

1

1 + z2
= 1 − z2 + z4 − z6 + z8 − · · · (|z| < 1).

Hence, when 0 < |z| < 1,

f (z) = 1

z3
(2 − 1 + z2 − z4 + z6 − z8 + · · ·) = 1

z3
+ 1

z
− z + z3 − z5 + · · · .

We call such terms as 1/z3 and 1/z negative powers of z since they can be written
z−3 and z−1, respectively. The theory of expansions involving negative powers of
z − z0 will be discussed in the next section.

EXERCISES∗

1. Obtain the Maclaurin series representation

z cosh(z2) =
∞∑

n=0

z4n+1

(2n)!
(|z| < ∞).

∗In these and subsequent exercises on series expansions, it is recommended that the reader use, when
possible, representations (1) through (6) in Sec. 59.
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2. Obtain the Taylor series

ez = e

∞∑
n=0

(z − 1)n

n!
(|z − 1| < ∞)

for the function f (z) = ez by

(a) using f (n)(1) (n = 0, 1, 2, . . .); (b) writing ez = ez−1e.

3. Find the Maclaurin series expansion of the function

f (z) = z

z4 + 9
= z

9
· 1

1 + (z4/9)
.

Ans.
∞∑

n=0

(−1)n

32n+2
z4n+1 (|z| <

√
3).

4. Show that if f (z) = sin z, then

f (2n)(0) = 0 and f (2n+1)(0) = (−1)n (n = 0, 1, 2, . . .).

Thus give an alternative derivation of the Maclaurin series (2) for sin z in Sec. 59.

5. Rederive the Maclaurin series (3) in Sec. 59 for the function f (z) = cos z by

(a) using the definition

cos z = eiz + e−iz

2

in Sec. 34 and appealing to the Maclaurin series (1) for ez in Sec. 59 ;
(b) showing that

f (2n)(0) = (−1)n and f (2n+1)(0) = 0 (n = 0, 1, 2, . . .).

6. Use representation (2), Sec. 59, for sin z to write the Maclaurin series for the function

f (z) = sin(z2),

and point out how it follows that

f (4n)(0) = 0 and f (2n+1)(0) = 0 (n = 0, 1, 2, . . .).

7. Derive the Taylor series representation

1

1 − z
=

∞∑
n=0

(z − i)n

(1 − i)n+1
(|z − i| <

√
2).

Suggestion: Start by writing

1

1 − z
= 1

(1 − i) − (z − i)
= 1

1 − i
· 1

1 − (z − i)/(1 − i)
.
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8. With the aid of the identity (see Sec. 34)

cos z = − sin
(
z − π

2

)
,

expand cos z into a Taylor series about the point z0 = π/2.

9. Use the identity sinh(z + πi) = −sinh z, verified in Exercise 7(a), Sec. 35, and the
fact that sinh z is periodic with period 2πi to find the Taylor series for sinh z about
the point z0 = πi.

Ans. −
∞∑

n=0

(z − πi)2n+1

(2n + 1)!
(|z − πi| < ∞).

10. What is the largest circle within which the Maclaurin series for the function tanh z

converges to tanh z? Write the first two nonzero terms of that series.

11. Show that when z �= 0,

(a)
ez

z2
= 1

z2
+ 1

z
+ 1

2!
+ z

3!
+ z2

4!
+ · · · ;

(b)
sin(z2)

z4
= 1

z2
− z2

3!
+ z6

5!
− z10

7!
+ · · · .

12. Derive the expansions

(a)
sinh z

z2
= 1

z
+

∞∑
n=0

z2n+1

(2n + 3)!
(0 < |z| < ∞);

(b) z3 cosh

(
1

z

)
= z

2
+ z3 +

∞∑
n=1

1

(2n + 2)!
· 1

z2n−1
(0 < |z| < ∞).

13. Show that when 0 < |z| < 4,

1

4z − z2
= 1

4z
+

∞∑
n=0

zn

4n+2
.

60. LAURENT SERIES

If a function f fails to be analytic at a point z0, one cannot apply Taylor’s theorem
at that point. It is often possible, however, to find a series representation for f (z)

involving both positive and negative powers of z − z0. (See Example 5, Sec. 59,
and also Exercises 11, 12, and 13 for that section.) We now present the theory of
such representations, and we begin with Laurent’s theorem.

Theorem. Suppose that a function f is analytic throughout an annular domain
R1 < |z − z0| < R2 , centered at z0 , and let C denote any positively oriented simple
closed contour around z0 and lying in that domain (Fig. 76). Then, at each point in
the domain, f (z) has the series representation

f (z) =
∞∑

n=0

an(z − z0)
n +

∞∑
n=1

bn

(z − z0)n
(R1 < |z − z0| < R2),(1)




