SEC. 59

If we substitute -z for z in equation (6) and its condition of validity, and note that |z| < 1 when |-z| < 1, we see that

$$\frac{1}{1+z} = \sum_{n=0}^{\infty} (-1)^n z^n \qquad (|z| < 1).$$

If, on the other hand, we replace the variable z in equation (6) by 1 - z, we have the Taylor series representation

$$\frac{1}{z} = \sum_{n=0}^{\infty} (-1)^n (z-1)^n \qquad (|z-1| < 1).$$

This condition of validity follows from the one associated with expansion (6) since |1 - z| < 1 is the same as |z - 1| < 1.

EXAMPLE 5. For our final example, let us expand the function

$$f(z) = \frac{1+2z^2}{z^3+z^5} = \frac{1}{z^3} \cdot \frac{2(1+z^2)-1}{1+z^2} = \frac{1}{z^3} \left(2 - \frac{1}{1+z^2}\right)$$

into a series involving powers of z. We cannot find a Maclaurin series for f(z) since it is not analytic at z = 0. But we do know from expansion (6) that

$$\frac{1}{1+z^2} = 1 - z^2 + z^4 - z^6 + z^8 - \dots \qquad (|z| < 1).$$

Hence, when 0 < |z| < 1,

$$f(z) = \frac{1}{z^3} \left(2 - 1 + z^2 - z^4 + z^6 - z^8 + \cdots\right) = \frac{1}{z^3} + \frac{1}{z} - z + z^3 - z^5 + \cdots$$

We call such terms as $1/z^3$ and 1/z negative powers of z since they can be written z^{-3} and z^{-1} , respectively. The theory of expansions involving negative powers of $z - z_0$ will be discussed in the next section.

EXERCISES*

1. Obtain the Maclaurin series representation

$$z\cosh(z^2) = \sum_{n=0}^{\infty} \frac{z^{4n+1}}{(2n)!} \qquad (|z| < \infty).$$

^{*}In these and subsequent exercises on series expansions, it is recommended that the reader use, when possible, representations (1) through (6) in Sec. 59.

196 SERIES

2. Obtain the Taylor series

$$e^{z} = e \sum_{n=0}^{\infty} \frac{(z-1)^{n}}{n!} \qquad (|z-1| < \infty)$$

for the function $f(z) = e^z$ by

- (a) using $f^{(n)}(1)$ (n = 0, 1, 2, ...); (b) writing $e^{z} = e^{z-1}e$.
- 3. Find the Maclaurin series expansion of the function

$$f(z) = \frac{z}{z^4 + 9} = \frac{z}{9} \cdot \frac{1}{1 + (z^4/9)}.$$

Ans. $\sum_{n=0}^{\infty} \frac{(-1)^n}{3^{2n+2}} z^{4n+1} \quad (|z| < \sqrt{3}).$

4. Show that if $f(z) = \sin z$, then

$$f^{(2n)}(0) = 0$$
 and $f^{(2n+1)}(0) = (-1)^n$ $(n = 0, 1, 2, ...)$

Thus give an alternative derivation of the Maclaurin series (2) for $\sin z$ in Sec. 59.

- 5. Rederive the Maclaurin series (3) in Sec. 59 for the function $f(z) = \cos z$ by
 - (a) using the definition

$$\cos z = \frac{e^{iz} + e^{-iz}}{2}$$

in Sec. 34 and appealing to the Maclaurin series (1) for e^z in Sec. 59; (b) showing that

$$f^{(2n)}(0) = (-1)^n$$
 and $f^{(2n+1)}(0) = 0$ $(n = 0, 1, 2, ...).$

6. Use representation (2), Sec. 59, for $\sin z$ to write the Maclaurin series for the function

$$f(z) = \sin(z^2),$$

and point out how it follows that

$$f^{(4n)}(0) = 0$$
 and $f^{(2n+1)}(0) = 0$ $(n = 0, 1, 2, ...).$

7. Derive the Taylor series representation

$$\frac{1}{1-z} = \sum_{n=0}^{\infty} \frac{(z-i)^n}{(1-i)^{n+1}} \qquad (|z-i| < \sqrt{2}).$$

Suggestion: Start by writing

$$\frac{1}{1-z} = \frac{1}{(1-i) - (z-i)} = \frac{1}{1-i} \cdot \frac{1}{1-(z-i)/(1-i)}.$$

SEC. 60

8. With the aid of the identity (see Sec. 34)

$$\cos z = -\sin\Big(z - \frac{\pi}{2}\Big),$$

expand $\cos z$ into a Taylor series about the point $z_0 = \pi/2$.

9. Use the identity $\sinh(z + \pi i) = -\sinh z$, verified in Exercise 7(*a*), Sec. 35, and the fact that $\sinh z$ is periodic with period $2\pi i$ to find the Taylor series for $\sinh z$ about the point $z_0 = \pi i$.

Ans.
$$-\sum_{n=0}^{\infty} \frac{(z-\pi i)^{2n+1}}{(2n+1)!} \quad (|z-\pi i| < \infty).$$

- 10. What is the largest circle within which the Maclaurin series for the function tanh z converges to tanh z? Write the first two nonzero terms of that series.
- **11.** Show that when $z \neq 0$,

(a)
$$\frac{e^z}{z^2} = \frac{1}{z^2} + \frac{1}{z} + \frac{1}{2!} + \frac{z}{3!} + \frac{z^2}{4!} + \cdots;$$

(b) $\frac{\sin(z^2)}{z^4} = \frac{1}{z^2} - \frac{z^2}{3!} + \frac{z^6}{5!} - \frac{z^{10}}{7!} + \cdots.$

12. Derive the expansions

(a)
$$\frac{\sinh z}{z^2} = \frac{1}{z} + \sum_{n=0}^{\infty} \frac{z^{2n+1}}{(2n+3)!}$$
 (0 < |z| < \infty);
(b) $z^3 \cosh\left(\frac{1}{z}\right) = \frac{z}{2} + z^3 + \sum_{n=1}^{\infty} \frac{1}{(2n+2)!} \cdot \frac{1}{z^{2n-1}}$ (0 < |z| < \infty).

13. Show that when 0 < |z| < 4,

$$\frac{1}{4z - z^2} = \frac{1}{4z} + \sum_{n=0}^{\infty} \frac{z^n}{4^{n+2}}.$$

60. LAURENT SERIES

If a function f fails to be analytic at a point z_0 , one cannot apply Taylor's theorem at that point. It is often possible, however, to find a series representation for f(z)involving both positive and negative powers of $z - z_0$. (See Example 5, Sec. 59, and also Exercises 11, 12, and 13 for that section.) We now present the theory of such representations, and we begin with *Laurent's theorem*.

Theorem. Suppose that a function f is analytic throughout an annular domain $R_1 < |z - z_0| < R_2$, centered at z_0 , and let C denote any positively oriented simple closed contour around z_0 and lying in that domain (Fig. 76). Then, at each point in the domain, f(z) has the series representation

(1)
$$f(z) = \sum_{n=0}^{\infty} a_n (z - z_0)^n + \sum_{n=1}^{\infty} \frac{b_n}{(z - z_0)^n} \qquad (R_1 < |z - z_0| < R_2),$$