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If we replace the index of summation n in the first of these series by n − 1 and then
interchange the two series, we arrive at an expansion having the same form as the
one in the statement of Laurent’s theorem (Sec. 60):

f (z) =
∞∑

n=0

zn

2n+1
+

∞∑
n=1

1

zn
(1 < |z| < 2).(4)

Since there is only one Laurent series for f (z) in the annulus D2, expansion (4) is,
in fact, the Laurent series for f (z) there.

EXAMPLE 5. The representation of the function (1) in the unbounded
domain D3, where 2 < |z| < ∞, is also a Laurent series. Since |2/z| < 1 when
z is in D3, it is also true that |1/z| < 1. So if we write expression (1) as

f (z) = 1

2
· 1

1 − (1/z)
− 1

z
· 1

1 − (2/z)
,

we find that

f (z) =
∞∑

n=0

1

zn+1
−

∞∑
n=0

2n

zn+1
=

∞∑
n=0

1 − 2n

zn+1
(2 < |z| < ∞).

Replacing n by n − 1 in this last series then gives the standard form

f (z) =
∞∑

n=1

1 − 2n−1

zn
(2 < |z| < ∞)(5)

used in Laurent’s theorem in Sec. 60. Here, of course, all the an’s in that theorem
are zero.

EXERCISES
1. Find the Laurent series that represents the function

f (z) = z2 sin

(
1

z2

)

in the domain 0 < |z| < ∞.

Ans. 1 +
∞∑

n=1

(−1)n

(2n + 1)!
· 1

z4n
.

2. Derive the Laurent series representation

ez

(z + 1)2
= 1

e

[ ∞∑
n=0

(z + 1)n

(n + 2)!
+ 1

z + 1
+ 1

(z + 1)2

]
(0 < |z + 1| < ∞).
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3. Find a representation for the function

f (z) = 1

1 + z
= 1

z
· 1

1 + (1/z)

in negative powers of z that is valid when 1 < |z| < ∞.

Ans.
∞∑

n=1

(−1)n+1

zn
.

4. Give two Laurent series expansions in powers of z for the function

f (z) = 1

z2(1 − z)
,

and specify the regions in which those expansions are valid.

Ans.
∞∑

n=0

zn + 1

z
+ 1

z2
(0 < |z| < 1); −

∞∑
n=3

1

zn
(1 < |z| < ∞).

5. Represent the function

f (z) = z + 1

z − 1

(a) by its Maclaurin series, and state where the representation is valid ;
(b) by its Laurent series in the domain 1 < |z| < ∞ .

Ans. (a) −1 − 2
∞∑

n=1

zn (|z| < 1); (b) 1 + 2
∞∑

n=1

1

zn
.

6. Show that when 0 < |z − 1| < 2,

z

(z − 1)(z − 3)
= −3

∞∑
n=0

(z − 1)n

2n+2
− 1

2(z − 1)
.

7. Write the two Laurent series in powers of z that represent the function

f (z) = 1

z(1 + z2)

in certain domains, and specify those domains.

Ans.
∞∑

n=0

(−1)n+1z2n+1 + 1

z
(0 < |z| < 1);

∞∑
n=1

(−1)n+1

z2n+1
(1 < |z| < ∞).

8. (a) Let a denote a real number, where −1 < a < 1, and derive the Laurent series
representation

a

z − a
=

∞∑
n=1

an

zn
(|a| < |z| < ∞).
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(b) After writing z = eiθ in the equation obtained in part (a), equate real parts and
then imaginary parts on each side of the result to derive the summation formulas

∞∑
n=1

an cos nθ = a cos θ − a2

1 − 2a cos θ + a2
and

∞∑
n=1

an sin nθ = a sin θ

1 − 2a cos θ + a2
,

where −1 < a < 1. (Compare with Exercise 4, Sec. 56.)

9. Suppose that a series
∞∑

n=−∞
x[n]z−n

converges to an analytic function X(z) in some annulus R1 < |z| < R2. That sum X(z)

is called the z-transform of x[n] (n = 0,±1,±2, . . .).∗ Use expression (5), Sec. 60,
for the coefficients in a Laurent series to show that if the annulus contains the unit
circle |z| = 1, then the inverse z-transform of X(z) can be written

x[n] = 1

2π

∫ π

−π

X(eiθ )einθ dθ (n = 0,±1,±2, . . .).

10. (a) Let z be any complex number, and let C denote the unit circle

w = eiφ (−π ≤ φ ≤ π)

in the w plane. Then use that contour in expression (5), Sec. 60, for the coefficients
in a Laurent series, adapted to such series about the origin in the w plane, to show
that

exp

[
z

2

(
w − 1

w

)]
=

∞∑
n=−∞

Jn(z)w
n (0 < |w| < ∞)

where

Jn(z) = 1

2π

∫ π

−π

exp[−i(nφ − z sin φ)] dφ (n = 0,±1,±2, . . .).

(b) With the aid of Exercise 5, Sec. 38, regarding certain definite integrals of even
and odd complex-valued functions of a real variable, show that the coefficients in
part (a) here can be written†

Jn(z) = 1

π

∫ π

0
cos(nφ − z sin φ) dφ (n = 0,±1,±2, . . .).

∗The z-transform arises in studies of discrete-time linear systems. See, for instance, the book by
Oppenheim, Schafer, and Buck that is listed in Appendix 1.
†These coefficients Jn(z) are called Bessel functions of the first kind. They play a prominent role in
certain areas of applied mathematics. See, for example, the authors’ “Fourier Series and Boundary
Value Problems,” 7th ed., Chap. 9, 2008.
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11. (a) Let f (z) denote a function which is analytic in some annular domain about the
origin that includes the unit circle z = eiφ (−π ≤ φ ≤ π). By taking that circle
as the path of integration in expressions (2) and (3), Sec. 60, for the coefficients
an and bn in a Laurent series in powers of z, show that

f (z) = 1

2π

∫ π

−π

f (eiφ) dφ + 1

2π

∞∑
n=1

∫ π

−π

f (eiφ)

[(
z

eiφ

)n

+
(

eiφ

z

)n]
dφ

when z is any point in the annular domain.
(b) Write u(θ) = Re[f (eiθ )] and show how it follows from the expansion in part (a)

that

u(θ) = 1

2π

∫ π

−π

u(φ) dφ + 1

π

∞∑
n=1

∫ π

−π

u(φ) cos[n(θ − φ)] dφ.

This is one form of the Fourier series expansion of the real-valued function
u(θ) on the interval −π ≤ θ ≤ π . The restriction on u(θ) is more severe than is
necessary in order for it to be represented by a Fourier series.∗

63. ABSOLUTE AND UNIFORM CONVERGENCE
OF POWER SERIES

This section and the three following it are devoted mainly to various properties of
power series. A reader who wishes to simply accept the theorems and the corollary
in these sections can easily skip the proofs in order to reach Sec. 67 more quickly.

We recall from Sec. 56 that a series of complex numbers converges absolutely
if the series of absolute values of those numbers converges. The following theorem
concerns the absolute convergence of power series.

Theorem 1. If a power series

∞∑
n=0

an(z − z0)
n(1)

converges when z = z1 (z1 �= z0), then it is absolutely convergent at each point z in
the open disk |z − z0| < R1 where R1 = |z1 − z0| (Fig. 79).
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FIGURE 79

∗For other sufficient conditions, see Secs. 12 and 13 of the book cited in the footnote to Exercise 10.




