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for each point z in it. Let g(z) be as defined by equation (4), but now allow n to
be a negative integer too. Also, let C be any circle around the annulus, centered
at z0 and taken in the positive sense. Then, using the index of summation m and
adapting Theorem 1 in Sec. 65 to series involving both nonnegative and negative
powers of z − z0 (Exercise 10), write∫

C

g(z)f (z) dz =
∞∑

m=−∞
cm

∫
C

g(z)(z − z0)
m dz,

or

1

2πi

∫
C

f (z) dz

(z − z0)n+1
=

∞∑
m=−∞

cm

∫
C

g(z)(z − z0)
m dz.(9)

Since equations (6) are also valid when the integers m and n are allowed to be
negative, equation (9) reduces to

1

2πi

∫
C

f (z) dz

(z − z0)n+1
= cn, (n = 0,±1, ±2, . . .),

which is expression (5), Sec. 60, for coefficients in the Laurent series for f in the
annulus.

EXERCISES
1. By differentiating the Maclaurin series representation

1

1 − z
=

∞∑
n=0

zn (|z| < 1),

obtain the expansions

1

(1 − z)2
=

∞∑
n=0

(n + 1) zn (|z| < 1)

and
2

(1 − z)3
=

∞∑
n=0

(n + 1)(n + 2) zn (|z| < 1).

2. By substituting 1/(1 − z) for z in the expansion

1

(1 − z)2
=

∞∑
n=0

(n + 1) zn (|z| < 1),

found in Exercise 1, derive the Laurent series representation

1

z2
=

∞∑
n=2

(−1)n(n − 1)

(z − 1)n
(1 < |z − 1| < ∞).

(Compare with Example 2, Sec. 65.)
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3. Find the Taylor series for the function

1

z
= 1

2 + (z − 2)
= 1

2
· 1

1 + (z − 2)/2

about the point z0 = 2. Then, by differentiating that series term by term, show that

1

z2
= 1

4

∞∑
n=0

(−1)n(n + 1)

(
z − 2

2

)n

(|z − 2| < 2).

4. With the aid of series, show that the function f defined by means of the equations

f (z) =
{
(sin z)/z when z �= 0,

1 when z = 0

is entire. Use that result to establish the limit

lim
z→0

sin z

z
= 1.

(See Example 1, Sec. 65.)

5. Prove that if

f (z) =




cos z

z2 − (π/2)2
when z �= ±π/2,

− 1

π
when z = ±π/2,

then f is an entire function.

6. In the w plane, integrate the Taylor series expansion (see Example 4, Sec. 59)

1

w
=

∞∑
n=0

(−1)n(w − 1)n (|w − 1| < 1)

along a contour interior to the circle of convergence from w = 1 to w = z to obtain
the representation

Log z =
∞∑

n=1

(−1)n+1

n
(z − 1)n (|z − 1| < 1).

7. Use the result in Exercise 6 to show that if

f (z) = Log z

z − 1
when z �= 1

and f (1) = 1, then f is analytic throughout the domain

0 < |z| < ∞, −π < Arg z < π.

8. Prove that if f is analytic at z0 and f (z0) = f ′(z0) = · · · = f (m)(z0) = 0, then the
function g defined by means of the equations
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g(z) =




f (z)

(z − z0)m+1
when z �= z0,

f (m+1)(z0)

(m + 1)!
when z = z0

is analytic at z0.

9. Suppose that a function f (z) has a power series representation

f (z) =
∞∑

n=0

an(z − z0)
n

inside some circle |z − z0| = R. Use Theorem 2 in Sec. 65, regarding term by term
differentiation of such a series, and mathematical induction to show that

f (n)(z) =
∞∑

k=0

(n + k)!

k!
an+k (z − z0)

k (n = 0, 1, 2, . . .)

when |z−z0| < R. Then, by setting z = z0, show that the coefficients an (n = 0, 1, 2,. . .)

are the coefficients in the Taylor series for f about z0. Thus give an alternative proof of
Theorem 1 in Sec. 66.

10. Consider two series

S1(z) =
∞∑

n=0

an(z − z0)
n, S2(z) =

∞∑
n=1

bn

(z − z0)n
,

which converge in some annular domain centered at z0. Let C denote any contour
lying in that annulus, and let g(z) be a function which is continuous on C. Modify
the proof of Theorem 1, Sec. 65, which tells us that∫

C

g(z)S1(z) dz =
∞∑

n=0

an

∫
C

g(z)(z − z0)
n dz ,

to prove that ∫
C

g(z)S2(z) dz =
∞∑

n=1

bn

∫
C

g(z)

(z − z0)n
dz .

Conclude from these results that if

S(z) =
∞∑

n=−∞
cn(z − z0)

n =
∞∑

n=0

an(z − z0)
n +

∞∑
n=1

bn

(z − z0)n
,

then ∫
C

g(z)S(z) dz =
∞∑

n=−∞
cn

∫
C

g(z)(z − z0)
n dz .

11. Show that the function

f2(z) = 1

z2 + 1
(z �= ± i)
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is the analytic continuation (Sec. 27) of the function

f1(z) =
∞∑

n=0

(−1)nz2n (|z| < 1)

into the domain consisting of all points in the z plane except z = ± i.

12. Show that the function f2(z) = 1/z2 (z �= 0) is the analytic continuation (Sec. 27) of
the function

f1(z) =
∞∑

n=0

(n + 1)(z + 1)n (|z + 1| < 1)

into the domain consisting of all points in the z plane except z = 0.

67. MULTIPLICATION AND DIVISION OF POWER SERIES

Suppose that each of the power series
∞∑

n=0

an(z − z0)
n and

∞∑
n=0

bn(z − z0)
n(1)

converges within some circle |z − z0| = R. Their sums f (z) and g(z), respectively,
are then analytic functions in the disk |z − z0| < R (Sec. 65), and the product of
those sums has a Taylor series expansion which is valid there:

f (z)g(z) =
∞∑

n=0

cn(z − z0)
n (|z − z0| < R).(2)

According to Theorem 1 in Sec. 66, the series (1) are themselves Taylor series.
Hence the first three coefficients in series (2) are given by the equations

c0 = f (z0)g(z0) = a0b0,

c1 = f (z0)g
′(z0) + f ′(z0)g(z0)

1!
= a0b1 + a1b0,

and

c2 = f (z0)g
′′(z0) + 2f ′(z0)g

′(z0) + f ′′(z0)g(z0)

2!
= a0b2 + a1b1 + a2b0.

The general expression for any coefficient cn is easily obtained by referring to
Leibniz’s rule (Exercise 6)

[f (z)g(z)](n) =
n∑

k=0

(n

k

)
f (k)(z)g(n−k)(z) (n = 1, 2, . . .),(3)

where (n

k

)
= n!

k!(n − k)!
(k = 0, 1, 2, . . . , n),




