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22 Complex Numbers chap. 1

and, since (Sec. 7)

z−1
2 = 1

r2
e−iθ2 ,

one can see that

arg(z−1
2 ) = −arg z2.(3)

Hence

arg

(
z1

z2

)
= arg z1 − arg z2.(4)

Statement (3) is, of course, to be interpreted as saying that the set of all values
on the left-hand side is the same as the set of all values on the right-hand side.
Statement (4) is, then, to be interpreted in the same way that statement (2) is.

EXAMPLE 2. In order to find the principal argument Arg z when

z = −2

1 + √
3i

,

observe that
arg z = arg(−2) − arg(1 +

√
3i).

Since
Arg(−2) = π and Arg(1 +

√
3i) = π

3
,

one value of arg z is 2π/3; and, because 2π/3 is between −π and π , we find that
Arg z = 2π/3.

EXERCISES
1. Find the principal argument Arg z when

(a) z = i

−2 − 2i
; (b) z = (

√
3 − i)6.

Ans. (a) −3π/4; (b) π .

2. Show that (a) |eiθ | = 1; (b) eiθ = e−iθ .

3. Use mathematical induction to show that

eiθ1eiθ2 · · · eiθn = ei(θ1+θ2+···+θn) (n = 2, 3, . . .).

4. Using the fact that the modulus |eiθ − 1| is the distance between the points eiθ and 1
(see Sec. 4), give a geometric argument to find a value of θ in the interval 0 ≤ θ < 2π

that satisfies the equation |eiθ − 1| = 2.
Ans. π .
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5. By writing the individual factors on the left in exponential form, performing the needed
operations, and finally changing back to rectangular coordinates, show that

(a) i(1 − √
3i)(

√
3 + i) = 2(1 + √

3i); (b) 5i/(2 + i) = 1 + 2i;

(c) (−1 + i)7 = −8(1 + i); (d) (1 + √
3i)−10 = 2−11(−1 + √

3i).

6. Show that if Re z1 > 0 and Re z2 > 0, then

Arg(z1z2) = Arg z1 + Arg z2,

where principal arguments are used.

7. Let z be a nonzero complex number and n a negative integer (n = −1,−2, . . .). Also,
write z = reiθ and m = −n = 1, 2, . . . . Using the expressions

zm = rmeimθ and z−1 =
(

1

r

)
ei(−θ),

verify that (zm)−1 = (z−1)m and hence that the definition zn = (z−1)m in Sec. 7 could
have been written alternatively as zn = (zm)−1.

8. Prove that two nonzero complex numbers z1 and z2 have the same moduli if and only
if there are complex numbers c1 and c2 such that z1 = c1c2 and z2 = c1c2.

Suggestion: Note that

exp

(
i
θ1 + θ2

2

)
exp

(
i
θ1 − θ2

2

)
= exp(iθ1)

and [see Exercise 2(b)]

exp

(
i
θ1 + θ2

2

)
exp

(
i
θ1 − θ2

2

)
= exp(iθ2).

9. Establish the identity

1 + z + z2 + · · · + zn = 1 − zn+1

1 − z
(z �= 1)

and then use it to derive Lagrange’s trigonometric identity:

1 + cos θ + cos 2θ + · · · + cos nθ = 1

2
+ sin[(2n + 1)θ/2]

2 sin(θ/2)
(0 < θ < 2π).

Suggestion: As for the first identity, write S = 1 + z + z2 + · · · + zn and consider
the difference S − zS. To derive the second identity, write z = eiθ in the first one.

10. Use de Moivre’s formula (Sec. 7) to derive the following trigonometric identities:

(a) cos 3θ = cos3 θ − 3 cos θ sin2 θ ; (b) sin 3θ = 3 cos2 θ sin θ − sin3 θ .
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11. (a) Use the binomial formula (Sec. 3) and de Moivre’s formula (Sec. 7) to write

cos nθ + i sin nθ =
n∑

k=0

(n

k

)
cosn−k θ (i sin θ)k (n = 0, 1, 2, . . .).

Then define the integer m by means of the equations

m =
{
n/2 if n is even,

(n − 1)/2 if nis odd

and use the above summation to show that [compare with Exercise 10(a)]

cos nθ =
m∑

k=0

( n

2k

)
(−1)k cosn−2k θ sin2k θ (n = 0, 1, 2, . . .).

(b) Write x = cos θ in the final summation in part (a) to show that it becomes a
polynomial

Tn(x) =
m∑

k=0

(
n

2k

)
(−1)kxn−2k(1 − x2)k

of degree n (n = 0, 1, 2, . . .) in the variable x.∗

9. ROOTS OF COMPLEX NUMBERS

Consider now a point z = reiθ , lying on a circle centered at the origin with radius
r (Fig. 10). As θ is increased, z moves around the circle in the counterclockwise
direction. In particular, when θ is increased by 2π , we arrive at the original point;
and the same is true when θ is decreased by 2π . It is, therefore, evident from Fig. 10
that two nonzero complex numbers

z1 = r1e
iθ1 and z2 = r2e

iθ2

xO

r

y

FIGURE 10

∗These are called Chebyshev polynomials and are prominent in approximation theory.




