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That is,

1

1 + z2/3! + z4/5! + · · · = 1 − 1

3!
z2 +

[
1

(3!)2
− 1

5!

]
z4 + · · · ,

or

1

1 + z2/3! + z4/5! + · · · = 1 − 1

6
z2 + 7

360
z4 + · · · (|z| < π).(8)

Hence

1

z2 sinh z
= 1

z3
− 1

6
· 1

z
+ 7

360
z + · · · (0 < |z| < π).(9)

Although we have given only the first three nonzero terms of this Laurent series,
any number of terms can, of course, be found by continuing the division.

EXERCISES
1. Use multiplication of series to show that

ez

z(z2 + 1)
= 1

z
+ 1 − 1

2
z − 5

6
z2 + · · · (0 < |z| < 1).

2. By writing csc z = 1/ sin z and then using division, show that

csc z = 1

z
+ 1

3!
z +

[
1

(3!)2
− 1

5!

]
z3 + · · · (0 < |z| < π).

3. Use division to obtain the Laurent series representation

1

ez − 1
= 1

z
− 1

2
+ 1

12
z − 1

720
z3 + · · · (0 < |z| < 2π).

4. Use the expansion

1

z2 sinh z
= 1

z3
− 1

6
· 1

z
+ 7

360
z + · · · (0 < |z| < π)

in Example 2, Sec. 67, and the method illustrated in Example 1, Sec. 62, to show that∫
C

dz

z2 sinh z
= −πi

3
,

when C is the positively oriented unit circle |z| = 1.

5. Follow these steps, which illustrate an alternative to straightforward division, to obtain
representation (8) in Example 2, Sec. 67.

(a) Write

1

1 + z2/3! + z4/5! + · · · = d0 + d1z + d2z
2 + d3z

3 + d4z
4 + · · · ,
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where the coefficients in the power series on the right are to be determined by
multiplying the two series in the equation

1 =
(

1 + 1

3!
z2 + 1

5!
z4 + · · ·

)
(d0 + d1z + d2z

2 + d3z
3 + d4z

4 + · · ·).

Perform this multiplication to show that

(d0 − 1) + d1z +
(

d2 + 1

3!
d0

)
z2 +

(
d3 + 1

3!
d1

)
z3

+
(

d4 + 1

3!
d2 + 1

5!
d0

)
z4 + · · · = 0

when |z| < π .
(b) By setting the coefficients in the last series in part (a) equal to zero, find the values

of d0, d1, d2, d3, and d4. With these values, the first equation in part (a) becomes
equation (8), Sec. 67.

6. Use mathematical induction to establish Leibniz’ rule (Sec. 67)

(fg)(n) =
n∑

k=0

(
n

k

)
f (k)g(n−k) (n = 1, 2, . . .)

for the nth derivative of the product of two differentiable functions f (z) and g(z).
Suggestion: Note that the rule is valid when n = 1. Then, assuming that it is

valid when n = m where m is any positive integer, show that

(fg)(m+1) = (fg′)(m) + (f ′g)(m)

= fg(m+1) +
m∑

k=1

[(
m

k

)
+

(
m

k − 1

)]
f (k)g(m+1−k) + f (m+1)g.

Finally, with the aid of the identify(
m

k

)
+

(
m

k − 1

)
=

(
m + 1

k

)

that was used in Exercise 8, Sec. 3, show that

(fg)(m+1) = fg(m+1) +
m∑

k=1

(
m + 1

k

)
f (k)g(m+1−k) + f (m+1)g

=
m+1∑
k=0

(
m + 1

k

)
f (k)g(m+1−k).

7. Let f (z) be an entire function that is represented by a series of the form

f (z) = z + a2z
2 + a3z

3 + · · · (|z| < ∞).
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(a) By differentiating the composite function g(z) = f [f (z)] successively, find the
first three nonzero terms in the Maclaurin series for g(z) and thus show that

f [f (z)] = z + 2 a2z
2 + 2 (a2

2 + a3)z
3 + · · · (|z| < ∞).

(b) Obtain the result in part (a) in a formal manner by writing

f [f (z)] = f (z) + a2[f (z)] 2 + a3[f (z)] 3 + · · · ,

replacing f (z) on the right-hand side here by its series representation, and then
collecting terms in like powers of z.

(c) By applying the result in part (a) to the function f (z) = sin z, show that

sin(sin z) = z − 1

3
z3 + · · · (|z| < ∞).

8. The Euler numbers are the numbers En (n = 0, 1, 2, . . .) in the Maclaurin series
representation

1

cosh z
=

∞∑
n=0

En

n!
zn (|z| < π/2).

Point out why this representation is valid in the indicated disk and why

E2n+1 = 0 (n = 0, 1, 2, . . .).

Then show that

E0 = 1, E2 = −1, E4 = 5, and E6 = −61.




