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sec. 71 Exercises 239

EXAMPLE. In the example in Sec. 70, we evaluated the integral of

f (z) = 5z − 2

z(z − 1)

around the circle |z| = 2, described counterclockwise, by finding the residues of
f (z) at z = 0 and z = 1. Since

1

z2
f

(
1

z

)
= 5 − 2z

z(1 − z)
= 5 − 2z

z
· 1

1 − z

=
(

5

z
− 2

)
(1 + z + z2 + · · ·)

= 5

z
+ 3 + 3z + · · · (0 < |z| < 1),

we see that the theorem here can also be used, where the desired residue is 5. More
precisely, ∫

C

5z − 2

z(z − 1)
dz = 2πi(5) = 10πi,

where C is the circle in question. This is, of course, the result obtained in the
example in Sec. 70.

EXERCISES
1. Find the residue at z = 0 of the function

(a)
1

z + z2
; (b) z cos

(
1

z

)
; (c)

z − sin z

z
; (d)

cot z

z4
; (e)

sinh z

z4(1 − z2)
.

Ans. (a) 1; (b) −1/2 ; (c) 0 ; (d) −1/45 ; (e) 7/6.

2. Use Cauchy’s residue theorem (Sec. 70) to evaluate the integral of each of these
functions around the circle |z| = 3 in the positive sense:

(a)
exp(−z)

z2
; (b)

exp(−z)

(z − 1)2
; (c) z2 exp

(
1

z

)
; (d)

z + 1

z2 − 2z
.

Ans. (a) −2πi; (b) −2πi/e ; (c) πi/3 ; (d) 2πi.

3. Use the theorem in Sec. 71, involving a single residue, to evaluate the integral of each
of these functions around the circle |z| = 2 in the positive sense:

(a)
z5

1 − z3
; (b)

1

1 + z2
; (c)

1

z
.

Ans. (a) −2πi; (b) 0 ; (c) 2πi.

4. Let C denote the circle |z| = 1, taken counterclockwise, and use the following steps
to show that ∫

C

exp

(
z + 1

z

)
dz = 2πi

∞∑
n=0

1

n! (n + 1)!
.
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(a) By using the Maclaurin series for ez and referring to Theorem 1 in Sec. 65, which
justifies the term by term integration that is to be used, write the above integral as

∞∑
n=0

1

n!

∫
C

zn exp

(
1

z

)
dz.

(b) Apply the theorem in Sec. 70 to evaluate the integrals appearing in part (a) to
arrive at the desired result.

5. Suppose that a function f is analytic throughout the finite plane except for a finite
number of singular points z1, z2, . . . , zn. Show that

Res
z=z1

f (z) + Res
z=z2

f (z) + · · · + Res
z=zn

f (z) + Res
z=∞ f (z) = 0.

6. Let the degrees of the polynomials

P (z) = a0 + a1z + a2z
2 + · · · + anz

n (an �= 0)

and
Q(z) = b0 + b1z + b2z

2 + · · · + bmzm (bm �= 0)

be such that m ≥ n + 2. Use the theorem in Sec. 71 to show that if all of the zeros of
Q(z) are interior to a simple closed contour C, then∫

C

P (z)

Q(z)
dz = 0.

[Compare with Exercise 3(b).]

72. THE THREE TYPES OF ISOLATED SINGULAR POINTS
We saw in Sec. 69 that the theory of residues is based on the fact that if f has an
isolated singular point at z0, then f (z) has a Laurent series representation

f (z) =
∞∑

n=0

an(z − z0)
n + b1

z − z0
+ b2

(z − z0)2
+ · · · + bn

(z − z0)n
+ · · ·(1)

in a punctured disk 0 < |z − z0| < R2. The portion

b1

z − z0
+ b2

(z − z0)2
+ · · · + bn

(z − z0)n
+ · · ·(2)

of the series, involving negative powers of z − z0, is called the principal part of f

at z0. We now use the principal part to identify the isolated singular point z0 as one
of three special types. This classification will aid us in the development of residue
theory that appears in following sections.

If the principal part of f at z0 contains at least one nonzero term but the number
of such terms is only finite, then there exists a positive integer m (m ≥ 1) such that

bm �= 0 and bm+1 = bm+2 = · · · = 0.




