EXAMPLE. In the example in Sec. 70, we evaluated the integral of

$$
f(z) = \frac{5z - 2}{z(z - 1)}
$$

around the circle $|z| = 2$, described counterclockwise, by finding the residues of $f(z)$ at $z = 0$ and $z = 1$. Since

$$
\frac{1}{z^2} f\left(\frac{1}{z}\right) = \frac{5 - 2z}{z(1 - z)} = \frac{5 - 2z}{z} \cdot \frac{1}{1 - z}
$$

$$
= \left(\frac{5}{z} - 2\right)(1 + z + z^2 + \cdots)
$$

$$
= \frac{5}{z} + 3 + 3z + \cdots \qquad (0 < |z| < 1),
$$

we see that the theorem here can also be used, where the desired residue is 5. More precisely,

$$
\int_C \frac{5z - 2}{z(z - 1)} dz = 2\pi i (5) = 10\pi i,
$$

where *C* is the circle in question. This is, of course, the result obtained in the example in Sec. 70.

EXERCISES

1. Find the residue at $z = 0$ of the function

(a)
$$
\frac{1}{z + z^2}
$$
; (b) $z \cos(\frac{1}{z})$; (c) $\frac{z - \sin z}{z}$; (d) $\frac{\cot z}{z^4}$; (e) $\frac{\sinh z}{z^4(1 - z^2)}$.
\n*Ans.* (a) 1; (b) -1/2; (c) 0; (d) -1/45; (e) 7/6.

2. Use Cauchy's residue theorem (Sec. 70) to evaluate the integral of each of these functions around the circle $|z| = 3$ in the positive sense:

(a)
$$
\frac{\exp(-z)}{z^2}
$$
; (b) $\frac{\exp(-z)}{(z-1)^2}$; (c) $z^2 \exp(\frac{1}{z})$; (d) $\frac{z+1}{z^2-2z}$.
\n*Ans.* (a) $-2\pi i$; (b) $-2\pi i/e$; (c) $\pi i/3$; (d) $2\pi i$.

3. Use the theorem in Sec. 71, involving a single residue, to evaluate the integral of each of these functions around the circle $|z| = 2$ in the positive sense:

(a)
$$
\frac{z^5}{1-z^3}
$$
; (b) $\frac{1}{1+z^2}$; (c) $\frac{1}{z}$.
\n*Ans.* (a) $-2\pi i$; (b) 0; (c) $2\pi i$.

4. Let *C* denote the circle $|z| = 1$, taken counterclockwise, and use the following steps to show that

$$
\int_C \exp\left(z + \frac{1}{z}\right) dz = 2\pi i \sum_{n=0}^{\infty} \frac{1}{n!(n+1)!}.
$$

240 RESIDUES AND POLES **CHAP.** 6

(a) By using the Maclaurin series for e^z and referring to Theorem 1 in Sec. 65, which justifies the term by term integration that is to be used, write the above integral as

$$
\sum_{n=0}^{\infty} \frac{1}{n!} \int_C z^n \exp\left(\frac{1}{z}\right) dz.
$$

- *(b)* Apply the theorem in Sec. 70 to evaluate the integrals appearing in part *(a)* to arrive at the desired result.
- **5.** Suppose that a function *f* is analytic throughout the finite plane except for a finite number of singular points z_1, z_2, \ldots, z_n . Show that

Res
$$
f(z)
$$
 + Res $f(z)$ + \cdots + Res $f(z)$ + Res $f(z)$ + Res $f(z)$ = 0.

6. Let the degrees of the polynomials

$$
P(z) = a_0 + a_1 z + a_2 z^2 + \dots + a_n z^n \qquad (a_n \neq 0)
$$

and

$$
Q(z) = b_0 + b_1 z + b_2 z^2 + \dots + b_m z^m \qquad (b_m \neq 0)
$$

be such that $m > n + 2$. Use the theorem in Sec. 71 to show that if all of the zeros of $Q(z)$ are interior to a simple closed contour *C*, then

$$
\int_C \frac{P(z)}{Q(z)} dz = 0.
$$

[Compare with Exercise 3*(b)*.]

72. THE THREE TYPES OF ISOLATED SINGULAR POINTS

We saw in Sec. 69 that the theory of residues is based on the fact that if *f* has an isolated singular point at z_0 , then $f(z)$ has a Laurent series representation

(1)
$$
f(z) = \sum_{n=0}^{\infty} a_n (z - z_0)^n + \frac{b_1}{z - z_0} + \frac{b_2}{(z - z_0)^2} + \dots + \frac{b_n}{(z - z_0)^n} + \dots
$$

in a punctured disk $0 < |z - z_0| < R_2$. The portion

(2)
$$
\frac{b_1}{z-z_0} + \frac{b_2}{(z-z_0)^2} + \dots + \frac{b_n}{(z-z_0)^n} + \dots
$$

of the series, involving negative powers of $z - z_0$, is called the *principal part* of *f* at z_0 . We now use the principal part to identify the isolated singular point z_0 as one of three special types. This classification will aid us in the development of residue theory that appears in following sections.

If the principal part of f at z_0 contains at least one nonzero term but the number of such terms is only finite, then there exists a positive integer m ($m \geq 1$) such that

$$
b_m \neq 0
$$
 and $b_{m+1} = b_{m+2} = \cdots = 0$.