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sec. 72 Exercises 243

In the remaining sections of this chapter, we shall develop in greater depth
the theory of the three types of isolated singular points just described. The empha-
sis will be on useful and efficient methods for identifying poles and finding the
corresponding residues.

EXERCISES
1. In each case, write the principal part of the function at its isolated singular point and

determine whether that point is a pole, a removable singular point, or an essential
singular point:

(a) z exp

(
1

z

)
; (b)

z2

1 + z
; (c)

sin z

z
; (d)

cos z

z
; (e)

1

(2 − z)3
.

2. Show that the singular point of each of the following functions is a pole. Determine
the order m of that pole and the corresponding residue B.

(a)
1 − cosh z

z3
; (b)

1 − exp(2z)

z4
; (c)

exp(2z)

(z − 1)2
.

Ans. (a) m = 1, B = −1/2 ; (b) m = 3, B = −4/3 ; (c) m = 2, B = 2e2.

3. Suppose that a function f is analytic at z0, and write g(z) = f (z)/(z − z0). Show that

(a) if f (z0) �= 0, then z0 is a simple pole of g, with residue f (z0);
(b) if f (z0) = 0, then z0 is a removable singular point of g.

Suggestion: As pointed out in Sec. 57, there is a Taylor series for f (z) about z0
since f is analytic there. Start each part of this exercise by writing out a few terms
of that series.

4. Use the fact (see Sec. 29) that ez = −1 when

z = (2n + 1)πi (n = 0,±1,±2, . . .)

to show that e1/z assumes the value −1 an infinite number of times in each neighbor-
hood of the origin. More precisely, show that e1/z = −1 when

z = − i

(2n + 1)π
(n = 0,±1,±2, . . .);

then note that if n is large enough, such points lie in any given ε neighborhood
of the origin. Zero is evidently the exceptional value in Picard’s theorem, stated in
Example 5, Sec. 72.

5. Write the function

f (z) = 8a3z2

(z2 + a2)3
(a > 0)

as

f (z) = φ(z)

(z − ai)3
where φ(z) = 8a3z2

(z + ai)3
.
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Point out why φ(z) has a Taylor series representation about z = ai, and then use it to
show that the principal part of f at that point is

φ′′(ai)/2

z − ai
+ φ′(ai)

(z − ai)2
+ φ(ai)

(z − ai)3
= − i/2

z − ai
− a/2

(z − ai)2
− a2i

(z − ai)3
.

73. RESIDUES AT POLES
When a function f has an isolated singularity at a point z0 , the basic method for
identifying z0 as a pole and finding the residue there is to write the appropriate
Laurent series and to note the coefficient of 1/(z − z0). The following theorem
provides an alternative characterization of poles and a way of finding residues at
poles that is often more convenient.

Theorem. An isolated singular point z0 of a function f is a pole of order m

if and only if f (z) can be written in the form

f (z) = φ(z)

(z − z0)m
,(1)

where φ(z) is analytic and nonzero at z0 . Moreover,

Res
z=z0

f (z) = φ(z0) if m = 1(2)

and

Res
z=z0

f (z) = φ(m−1)(z0)

(m − 1)!
if m ≥ 2.(3)

Observe that expression (2) need not have been written separately since, with
the convention that φ(0)(z0) = φ(z0) and 0! = 1, expression (3) reduces to it when
m = 1.

To prove the theorem, we first assume that f (z) has the form (1) and recall
(Sec. 57) that since φ(z) is analytic at z0, it has a Taylor series representation

φ(z) = φ(z0) + φ′(z0)

1!
(z − z0) + φ′′(z0)

2!
(z − z0)

2 + · · · + φ(m−1)(z0)

(m − 1)!
(z − z0)

m−1

+
∞∑

n=m

φ(n)(z0)

n!
(z − z0)

n

in some neighborhood |z − z0| < ε of z0; and from expression (1) it follows that

f (z) = φ(z0)

(z − z0)m
+ φ′(z0)/1!

(z − z0)m−1
+ φ′′(z0)/2!

(z − z0)m−2
+ · · · + φ(m−1)(z0)/(m − 1)!

z − z0

+
∞∑

n=m

φ(n)(z0)

n!
(z − z0)

n−m




