EXERCISES

1. In each case, show that any singular point of the function is a pole. Determine the order *m* of each pole, and find the corresponding residue *B*.

(a)
$$\frac{z^2+2}{z-1}$$
; (b) $\left(\frac{z}{2z+1}\right)^3$; (c) $\frac{\exp z}{z^2+\pi^2}$.
Ans. (a) $m = 1, B = 3$; (b) $m = 3, B = -3/16$; (c) $m = 1, B = \pm i/2\pi$.

2. Show that

(a)
$$\operatorname{Res}_{z=-1} \frac{z^{1/4}}{z+1} = \frac{1+i}{\sqrt{2}}$$
 ($|z| > 0, 0 < \arg z < 2\pi$);
(b) $\operatorname{Res}_{z=i} \frac{\operatorname{Log} z}{(z^2+1)^2} = \frac{\pi+2i}{8}$;
(c) $\operatorname{Res}_{z=i} \frac{z^{1/2}}{(z^2+1)^2} = \frac{1-i}{8\sqrt{2}}$ ($|z| > 0, 0 < \arg z < 2\pi$).

3. Find the value of the integral

$$\int_C \frac{3z^3 + 2}{(z - 1)(z^2 + 9)} \, dz$$

taken counterclockwise around the circle (a) |z - 2| = 2; (b) |z| = 4. Ans. (a) πi ; (b) $6\pi i$.

4. Find the value of the integral

$$\int_C \frac{dz}{z^3(z+4)},$$

taken counterclockwise around the circle (a) |z| = 2; (b) |z + 2| = 3. Ans. (a) $\pi i/32$; (b) 0.

5. Evaluate the integral

$$\int_C \frac{\cosh \pi z}{z(z^2+1)} dz$$

when C is the circle |z| = 2, described in the positive sense. Ans. $4\pi i$.

6. Use the theorem in Sec. 71, involving a single residue, to evaluate the integral of f(z) around the positively oriented circle |z| = 3 when

(a)
$$f(z) = \frac{(3z+2)^2}{z(z-1)(2z+5)};$$
 (b) $f(z) = \frac{z^3(1-3z)}{(1+z)(1+2z^4)};$ (c) $f(z) = \frac{z^3e^{1/z}}{1+z^3}.$

Ans. (a) $9\pi i$; (b) $-3\pi i$; (c) $2\pi i$.

7. Let z_0 be an isolated singular point of a function f and suppose that

$$f(z) = \frac{\phi(z)}{(z - z_0)^m},$$

where *m* is a positive integer and $\phi(z)$ is analytic and nonzero at z_0 . By applying the extended form (6), Sec. 51, of the Cauchy integral formula to the function $\phi(z)$,

show that

$$\operatorname{Res}_{z=z_0} f(z) = \frac{\phi^{(m-1)}(z_0)}{(m-1)!},$$

as stated in the theorem of Sec. 73.

Suggestion: Since there is a neighborhood $|z - z_0| < \varepsilon$ throughout which $\phi(z)$ is analytic (see Sec. 24), the contour used in the extended Cauchy integral formula can be the positively oriented circle $|z - z_0| = \varepsilon/2$.

75. ZEROS OF ANALYTIC FUNCTIONS

Zeros and poles of functions are closely related. In fact, we shall see in the next section how zeros can be a source of poles. We need, however, some preliminary results regarding zeros of analytic functions.

Suppose that a function f is analytic at a point z_0 . We know from Sec. 52 that all of the derivatives $f^{(n)}(z)$ (n = 1, 2, ...) exist at z_0 . If $f(z_0) = 0$ and if there is a positive integer m such that $f^{(m)}(z_0) \neq 0$ and each derivative of lower order vanishes at z_0 , then f is said to have a zero of order m at z_0 . Our first theorem here provides a useful alternative characterization of zeros of order m.

Theorem 1. Let a function f be analytic at a point z_0 . It has a zero of order m at z_0 if and only if there is a function g, which is analytic and nonzero at z_0 , such that

(1)
$$f(z) = (z - z_0)^m g(z).$$

Both parts of the proof that follows use the fact (Sec. 57) that if a function is analytic at a point z_0 , then it must have a Taylor series representation in powers of $z - z_0$ which is valid throughout a neighborhood $|z - z_0| < \varepsilon$ of z_0 .

We start the first part of the proof by assuming that expression (1) holds and noting that since g(z) is analytic at z_0 , it has a Taylor series representation

$$g(z) = g(z_0) + \frac{g'(z_0)}{1!}(z - z_0) + \frac{g''(z_0)}{2!}(z - z_0)^2 + \cdots$$

in some neighborhood $|z - z_0| < \varepsilon$ of z_0 . Expression (1) thus takes the form

$$f(z) = g(z_0)(z - z_0)^m + \frac{g'(z_0)}{1!}(z - z_0)^{m+1} + \frac{g''(z_0)}{2!}(z - z_0)^{m+2} + \cdots$$

when $|z - z_0| < \varepsilon$. Since this is actually a Taylor series expansion for f(z), according to Theorem 1 in Sec. 66, it follows that

(2)
$$f(z_0) = f'(z_0) = f''(z_0) = \dots = f^{(m-1)}(z_0) = 0$$