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248 Residues and Poles chap. 6

EXERCISES
1. In each case, show that any singular point of the function is a pole. Determine the

order m of each pole, and find the corresponding residue B.

(a)
z2 + 2

z − 1
; (b)

(
z

2z + 1

)3

; (c)
exp z

z2 + π2
.

Ans. (a) m = 1, B = 3; (b) m = 3, B = −3/16 ; (c) m = 1, B = ± i/2π .

2. Show that

(a) Res
z=−1

z1/4

z + 1
= 1 + i√

2
(|z| > 0, 0 < arg z < 2π);

(b) Res
z=i

Log z

(z2 + 1)2
= π + 2i

8
;

(c) Res
z=i

z1/2

(z2 + 1)2
= 1 − i

8
√

2
(|z| > 0, 0 < arg z < 2π).

3. Find the value of the integral ∫
C

3z3 + 2

(z − 1)(z2 + 9)
dz ,

taken counterclockwise around the circle (a) |z − 2| = 2 ; (b) |z| = 4.
Ans. (a) πi; (b) 6πi.

4. Find the value of the integral ∫
C

dz

z3(z + 4)
,

taken counterclockwise around the circle (a) |z| = 2 ; (b) |z + 2| = 3.
Ans. (a) πi/32 ; (b) 0 .

5. Evaluate the integral ∫
C

cosh πz

z(z2 + 1)
dz

when C is the circle |z| = 2, described in the positive sense.
Ans. 4πi.

6. Use the theorem in Sec. 71, involving a single residue, to evaluate the integral of f (z)

around the positively oriented circle |z| = 3 when

(a) f (z) = (3z + 2)2

z(z − 1)(2z + 5)
; (b) f (z) = z3(1 − 3z)

(1 + z)(1 + 2z4)
; (c) f (z) = z3e1/z

1 + z3
.

Ans. (a) 9πi; (b) −3πi; (c) 2πi.

7. Let z0 be an isolated singular point of a function f and suppose that

f (z) = φ(z)

(z − z0)m
,

where m is a positive integer and φ(z) is analytic and nonzero at z0. By applying
the extended form (6), Sec. 51, of the Cauchy integral formula to the function φ(z),
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show that

Res
z=z0

f (z) = φ(m−1)(z0)

(m − 1)!
,

as stated in the theorem of Sec. 73.
Suggestion: Since there is a neighborhood |z − z0| < ε throughout which φ(z) is

analytic (see Sec. 24), the contour used in the extended Cauchy integral formula can
be the positively oriented circle |z − z0| = ε/2.

75. ZEROS OF ANALYTIC FUNCTIONS
Zeros and poles of functions are closely related. In fact, we shall see in the next
section how zeros can be a source of poles. We need, however, some preliminary
results regarding zeros of analytic functions.

Suppose that a function f is analytic at a point z0. We know from Sec. 52 that
all of the derivatives f (n)(z) (n = 1, 2, . . .) exist at z0. If f (z0) = 0 and if there
is a positive integer m such that f (m)(z0) �= 0 and each derivative of lower order
vanishes at z0 , then f is said to have a zero of order m at z0. Our first theorem
here provides a useful alternative characterization of zeros of order m.

Theorem 1. Let a function f be analytic at a point z0. It has a zero of order
m at z0 if and only if there is a function g, which is analytic and nonzero at z0 , such
that

f (z) = (z − z0)
mg(z).(1)

Both parts of the proof that follows use the fact (Sec. 57) that if a function is
analytic at a point z0, then it must have a Taylor series representation in powers of
z − z0 which is valid throughout a neighborhood |z − z0| < ε of z0.

We start the first part of the proof by assuming that expression (1) holds and
noting that since g(z) is analytic at z0 , it has a Taylor series representation

g(z) = g(z0) + g′(z0)

1!
(z − z0) + g′′(z0)

2!
(z − z0)

2 + · · ·

in some neighborhood |z − z0| < ε of z0. Expression (1) thus takes the form

f (z) = g(z0)(z − z0)
m + g′(z0)

1!
(z − z0)

m+1 + g′′(z0)

2!
(z − z0)

m+2 + · · ·

when |z − z0| < ε. Since this is actually a Taylor series expansion for f (z), accord-
ing to Theorem 1 in Sec. 66, it follows that

f (z0) = f ′(z0) = f ′′(z0) = · · · = f (m−1)(z0) = 0(2)




