248  RESIDUES AND POLES CHAP. 6
EXERCISES
1. In each case, show that any singular point of the function is a pole. Determine the
order m of each pole, and find the corresponding residue B.
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Ans. (@ m=1,B=3;, (b)m=3,B=-3/16; (c)m=1B==+i/2x.
2. Show that
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3. Find the value of the integral
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taken counterclockwise around the circle (a) |z — 2| = 2; (b) |z| = 4.
Ans. (a) wi; (b) 67i.
4. Find the value of the integral J
z
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taken counterclockwise around the circle (a) |z] = 2; (b) |z + 2| = 3.
Ans. (a) 7i/32; (b) 0.
5. Evaluate the integral
/ coshrz J
ci@+n
when C is the circle |z| = 2, described in the positive sense.
Ans. 4ri.
6. Use the theorem in Sec. 71, involving a single residue, to evaluate the integral of f(z)
around the positively oriented circle |z] = 3 when
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Ans. (a) 9mi; (b) —3mi; (c) 2mi.
7. Let zo be an isolated singular point of a function f and suppose that
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where m is a positive integer and ¢(z) is analytic and nonzero at zo. By applying
the extended form (6), Sec. 51, of the Cauchy integral formula to the function ¢ (z),
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show that
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as stated in the theorem of Sec. 73.

Suggestion: Since there is a neighborhood |z — zg| < & throughout which ¢ (z) is
analytic (see Sec. 24), the contour used in the extended Cauchy integral formula can
be the positively oriented circle |z — zo| = &/2.

75. ZEROS OF ANALYTIC FUNCTIONS

Zeros and poles of functions are closely related. In fact, we shall see in the next
section how zeros can be a source of poles. We need, however, some preliminary
results regarding zeros of analytic functions.

Suppose that a function f is analytic at a point zo. We know from Sec. 52 that
all of the derivatives f™(z) (n =1,2,...) exist at zo. If f(z0) =0 and if there
is a positive integer m such that £ (zo) # 0 and each derivative of lower order
vanishes at zp, then f is said to have a zero of order m at zg. Our first theorem
here provides a useful alternative characterization of zeros of order m.

Theorem 1. Let a function f be analytic at a point zg. It has a zero of order
m at zg if and only if there is a function g, which is analytic and nonzero at zp , such
that

1) f@) =(z—20"g).

Both parts of the proof that follows use the fact (Sec. 57) that if a function is
analytic at a point zg, then it must have a Taylor series representation in powers of
z — zo Which is valid throughout a neighborhood |z — zg| < & of zo.

We start the first part of the proof by assuming that expression (1) holds and
noting that since g(z) is analytic at zg, it has a Taylor series representation
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in some neighborhood |z — zg| < € of zo. Expression (1) thus takes the form

8(2) = g(z0) + (z—z20)% 4
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when |z — zg] < e. Since this is actually a Taylor series expansion for f(z), accord-
ing to Theorem 1 in Sec. 66, it follows that

) fzo) = f'(zo) = f'(zo) == f" V(z) =0

f(@) =80z —z20)" + z—z0)" "+





