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and hence that z0 is a simple pole of f . The residue there is, moreover,

B0 = p(z0)

q ′(z0)
= z0

4z3
0

= 1

4z2
0

= 1

8i
= − i

8
.

Although this residue can also be found by the method in Sec. 73, the computation
is somewhat more involved.

There are formulas similar to formula (2) for residues at poles of higher order,
but they are lengthier and, in general, not practical.

EXERCISES
1. Show that the point z = 0 is a simple pole of the function

f (z) = csc z = 1

sin z

and that the residue there is unity by appealing to

(a) Theorem 2 in Sec. 76 ;
(b) the Laurent series for csc z that was found in Exercise 2, Sec. 67.

2. Show that

(a) Res
z=πi

z − sinh z

z2 sinh z
= i

π
;

(b) Res
z=πi

exp(zt)

sinh z
+ Res

z=−πi

exp(zt)

sinh z
= −2 cos (πt).

3. Show that

(a) Res
z=zn

(z sec z) = (−1)n+1 zn where zn = π

2
+ nπ (n = 0,±1,±2, . . .);

(b) Res
z=zn

(tanh z) = 1 where zn =
(π

2
+ nπ

)
i (n = 0,±1,±2, . . .).

4. Let C denote the positively oriented circle |z| = 2 and evaluate the integral

(a)
∫

C

tan z dz; (b)
∫

C

dz

sinh 2z
.

Ans. (a) −4πi; (b) −πi.

5. Let CN denote the positively oriented boundary of the square whose edges lie along
the lines

x = ±
(

N + 1

2

)
π and y = ±

(
N + 1

2

)
π,

where N is a positive integer. Show that

∫
CN

dz

z2 sin z
= 2πi

[
1

6
+ 2

N∑
n=1

(−1)n

n2π2

]
.
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Then, using the fact that the value of this integral tends to zero as N tends to infinity
(Exercise 8, Sec. 43), point out how it follows that

∞∑
n=1

(−1)n+1

n2
= π2

12
.

6. Show that ∫
C

dz

(z2 − 1)2 + 3
= π

2
√

2
,

where C is the positively oriented boundary of the rectangle whose sides lie along the
lines x = ±2, y = 0, and y = 1.

Suggestion: By observing that the four zeros of the polynomial q(z) = (z2 − 1)2 + 3
are the square roots of the numbers 1 ± √

3i, show that the reciprocal 1/q(z) is analytic
inside and on C except at the points

z0 =
√

3 + i√
2

and − z0 = −√
3 + i√
2

.

Then apply Theorem 2 in Sec. 76.

7. Consider the function

f (z) = 1

[q(z)]2

where q is analytic at z0, q(z0) = 0, and q ′(z0) �= 0. Show that z0 is a pole of order
m = 2 of the function f , with residue

B0 = − q ′′(z0)

[q ′(z0)]3
.

Suggestion: Note that z0 is a zero of order m = 1 of the function q, so that

q(z) = (z − z0)g(z)

where g(z) is analytic and nonzero at z0. Then write

f (z) = φ(z)

(z − z0)2
where φ(z) = 1

[g(z)]2
.

The desired form of the residue B0 = φ′(z0) can be obtained by showing that

q ′(z0) = g(z0) and q ′′(z0) = 2g′(z0).

8. Use the result in Exercise 7 to find the residue at z = 0 of the function

(a) f (z) = csc2 z; (b) f (z) = 1

(z + z2)2
.

Ans. (a) 0 ; (b) −2.

9. Let p and q denote functions that are analytic at a point z0 , where p(z0) �= 0 and
q(z0) = 0. Show that if the quotient p(z)/q(z) has a pole of order m at z0 , then z0 is
a zero of order m of q. (Compare with Theorem 1 in Sec. 76.)
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Suggestion: Note that the theorem in Sec. 73 enables one to write

p(z)

q(z)
= φ(z)

(z − z0)m
,

where φ(z) is analytic and nonzero at z0 . Then solve for q(z).

10. Recall (Sec. 11) that a point z0 is an accumulation point of a set S if each deleted neigh-
borhood of z0 contains at least one point of S. One form of the Bolzano–Weierstrass
theorem can be stated as follows: an infinite set of points lying in a closed bounded
region R has at least one accumulation point in R.∗ Use that theorem and Theorem 2
in Sec. 75 to show that if a function f is analytic in the region R consisting of all
points inside and on a simple closed contour C, except possibly for poles inside C,
and if all the zeros of f in R are interior to C and are of finite order, then those zeros
must be finite in number.

11. Let R denote the region consisting of all points inside and on a simple closed contour
C. Use the Bolzano–Weierstrass theorem (see Exercise 10) and the fact that poles are
isolated singular points to show that if f is analytic in the region R except for poles
interior to C, then those poles must be finite in number.

77. BEHAVIOR OF FUNCTIONS NEAR ISOLATED
SINGULAR POINTS

As already indicated in Sec. 72, the behavior of a function f near an isolated singular
point z0 varies, depending on whether z0 is a pole, a removable singular point, or
an essential singular point. In this section, we develop the differences in behavior
somewhat further. Since the results presented here will not be used elsewhere in the
book, the reader who wishes to reach applications of residue theory more quickly
may pass directly to Chap. 7 without disruption.

Theorem 1. If z0 is a pole of a function f , then

lim
z→z0

f (z) = ∞.(1)

To verify limit (1), we assume that f has a pole of order m at z0 and use the
theorem in Sec. 73. It tells us that

f (z) = φ(z)

(z − z0)m
,

where φ(z) is analytic and nonzero at z0. Since

lim
z→z0

1

f (z)
= lim

z→z0

(z − z0)
m

φ(z)
=

lim
z→z0

(z − z0)
m

lim
z→z0

φ(z)
= 0

φ(z0)
= 0,

∗See, for example, A. E. Taylor and W. R. Mann. “Advanced Calculus,” 3d ed., pp. 517 and 521,
1983.




