SEC. 79

or

It now follows from equation (2) that

$$\lim_{R \to \infty} \int_{-R}^{R} \frac{x^2}{x^6 + 1} \, dx = \frac{\pi}{3},$$

P.V. $\int_{-\infty}^{\infty} \frac{x^2}{x^6 + 1} \, dx = \frac{\pi}{3}.$

Since the integrand here is even, we know from equation (7) in Sec. 78 that

(4)
$$\int_0^\infty \frac{x^2}{x^6 + 1} \, dx = \frac{\pi}{6}.$$

EXERCISES

Use residues to evaluate the improper integrals in Exercises 1 through 5.

1.
$$\int_{0}^{\infty} \frac{dx}{x^{2}+1}.$$

Ans. $\pi/2$.
2.
$$\int_{0}^{\infty} \frac{dx}{(x^{2}+1)^{2}}.$$

Ans. $\pi/4$.
3.
$$\int_{0}^{\infty} \frac{dx}{x^{4}+1}.$$

Ans. $\pi/(2\sqrt{2}).$
4.
$$\int_{0}^{\infty} \frac{x^{2} dx}{(x^{2}+1)(x^{2}+4)}.$$

Ans. $\pi/6$.
5.
$$\int_{0}^{\infty} \frac{x^{2} dx}{(x^{2}+9)(x^{2}+4)^{2}}.$$

Ans. $\pi/200$.

Use residues to find the Cauchy principal values of the integrals in Exercises 6 and 7.

6.
$$\int_{-\infty}^{\infty} \frac{dx}{x^2 + 2x + 2}.$$

7.
$$\int_{-\infty}^{\infty} \frac{x \, dx}{(x^2 + 1)(x^2 + 2x + 2)}.$$

Ans. $-\pi/5.$

8. Use a residue and the contour shown in Fig. 95, where R > 1, to establish the integration formula

$$\int_0^\infty \frac{dx}{x^3 + 1} = \frac{2\pi}{3\sqrt{3}}.$$

9. Let *m* and *n* be integers, where $0 \le m < n$. Follow the steps below to derive the integration formula

$$\int_0^\infty \frac{x^{2m}}{x^{2n}+1} \, dx = \frac{\pi}{2n} \csc\left(\frac{2m+1}{2n}\pi\right).$$

(a) Show that the zeros of the polynomial $z^{2n} + 1$ lying above the real axis are

$$c_k = \exp\left[i\frac{(2k+1)\pi}{2n}\right]$$
 $(k = 0, 1, 2, ..., n-1)$

and that there are none on that axis.

(b) With the aid of Theorem 2 in Sec. 76, show that

$$\operatorname{Res}_{z=c_k} \frac{z^{2m}}{z^{2n}+1} = -\frac{1}{2n} e^{i(2k+1)\alpha} \qquad (k=0,1,2,\ldots,n-1)$$

where c_k are the zeros found in part (a) and

$$\alpha = \frac{2m+1}{2n}\pi$$

Then use the summation formula

$$\sum_{k=0}^{n-1} z^k = \frac{1-z^n}{1-z} \qquad (z \neq 1)$$

(see Exercise 9, Sec. 8) to obtain the expression

$$2\pi i \sum_{k=0}^{n-1} \operatorname{Res}_{z=c_k} \frac{z^{2m}}{z^{2n}+1} = \frac{\pi}{n \sin \alpha}.$$

(c) Use the final result in part (b) to complete the derivation of the integration formula.10. The integration formula

$$\int_0^\infty \frac{dx}{[(x^2 - a)^2 + 1]^2} = \frac{\pi}{8\sqrt{2}A^3} [(2a^2 + 3)\sqrt{A + a} + a\sqrt{A - a}],$$

where *a* is any real number and $A = \sqrt{a^2 + 1}$, arises in the theory of case-hardening of steel by means of radio-frequency heating.* Follow the steps below to derive it.

(a) Point out why the four zeros of the polynomial

$$q(z) = (z^2 - a)^2 + 1$$

are the square roots of the numbers $a \pm i$. Then, using the fact that the numbers

$$z_0 = \frac{1}{\sqrt{2}}(\sqrt{A+a} + i\sqrt{A-a})$$

and $-z_0$ are the square roots of a + i (Exercise 5, Sec. 10), verify that $\pm \overline{z_0}$ are the square roots of a - i and hence that z_0 and $-\overline{z_0}$ are the only zeros of q(z) in the upper half plane Im $z \ge 0$.

(b) Using the method derived in Exercise 7, Sec. 76, and keeping in mind that $z_0^2 = a + i$ for purposes of simplification, show that the point z_0 in part (a) is a pole of order 2 of the function $f(z) = 1/[q(z)]^2$ and that the residue B_1 at z_0 can be written

$$B_1 = -\frac{q''(z_0)}{[q'(z_0)]^3} = \frac{a - i(2a^2 + 3)}{16A^2 z_0}$$

After observing that $q'(-\overline{z}) = -\overline{q'(z)}$ and $q''(-\overline{z}) = \overline{q''(z)}$, use the same method to show that the point $-\overline{z_0}$ in part (a) is also a pole of order 2 of the function f(z), with residue

$$B_2 = \overline{\left\{\frac{q''(z_0)}{[q'(z_0)]^3}\right\}} = -\overline{B_1}.$$

Then obtain the expression

$$B_1 + B_2 = \frac{1}{8A^2i} \operatorname{Im}\left[\frac{-a + i(2a^2 + 3)}{z_0}\right]$$

for the sum of these residues.

(c) Refer to part (a) and show that $|q(z)| \ge (R - |z_0|)^4$ if |z| = R, where $R > |z_0|$. Then, with the aid of the final result in part (b), complete the derivation of the integration formula.

80. IMPROPER INTEGRALS FROM FOURIER ANALYSIS

Residue theory can be useful in evaluating convergent improper integrals of the form

(1)
$$\int_{-\infty}^{\infty} f(x) \sin ax \, dx \quad \text{or} \quad \int_{-\infty}^{\infty} f(x) \cos ax \, dx,$$

^{*}See pp. 359–364 of the book by Brown, Hoyler, and Bierwirth that is listed in Appendix 1.