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It now follows from equation (2) that

lim
R→∞

∫ R

−R

x2

x6 + 1
dx = π

3
,

or

P.V.
∫ ∞

−∞

x2

x6 + 1
dx = π

3
.

Since the integrand here is even, we know from equation (7) in Sec. 78 that∫ ∞

0

x2

x6 + 1
dx = π

6
.(4)

EXERCISES

Use residues to evaluate the improper integrals in Exercises 1 through 5.

1.
∫ ∞

0

dx

x2 + 1
.

Ans. π/2.

2.
∫ ∞

0

dx

(x2 + 1)2
.

Ans. π/4.

3.
∫ ∞

0

dx

x4 + 1
.

Ans. π/(2
√

2).

4.
∫ ∞

0

x2 dx

(x2 + 1)(x2 + 4)
.

Ans. π/6.

5.
∫ ∞

0

x2 dx

(x2 + 9)(x2 + 4)2
.

Ans. π/200.

Use residues to find the Cauchy principal values of the integrals in Exercises 6
and 7.

6.
∫ ∞

−∞

dx

x2 + 2x + 2
.

7.
∫ ∞

−∞

x dx

(x2 + 1)(x2 + 2x + 2)
.

Ans. −π/5.

8. Use a residue and the contour shown in Fig. 95, where R > 1, to establish the inte-
gration formula ∫ ∞

0

dx

x3 + 1
= 2π

3
√

3
.
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9. Let m and n be integers, where 0 ≤ m < n. Follow the steps below to derive the
integration formula

∫ ∞

0

x2m

x2n + 1
dx = π

2n
csc

(
2m + 1

2n
π

)
.

(a) Show that the zeros of the polynomial z2n + 1 lying above the real axis are

ck = exp

[
i
(2k + 1)π

2n

]
(k = 0, 1, 2, . . . , n − 1)

and that there are none on that axis.
(b) With the aid of Theorem 2 in Sec. 76, show that

Res
z=ck

z2m

z2n + 1
= − 1

2n
ei(2k+1)α (k = 0, 1, 2, . . . , n − 1)

where ck are the zeros found in part (a) and

α = 2m + 1

2n
π.

Then use the summation formula

n−1∑
k=0

zk = 1 − zn

1 − z
(z �= 1)

(see Exercise 9, Sec. 8) to obtain the expression

2πi

n−1∑
k=0

Res
z=ck

z2m

z2n + 1
= π

n sin α
.

(c) Use the final result in part (b) to complete the derivation of the integration formula.

10. The integration formula∫ ∞

0

dx

[(x2 − a)2 + 1] 2
= π

8
√

2A3
[(2a2 + 3)

√
A + a + a

√
A − a],
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where a is any real number and A = √
a2 + 1, arises in the theory of case-hardening

of steel by means of radio-frequency heating.∗ Follow the steps below to derive it.

(a) Point out why the four zeros of the polynomial

q(z) = (z2 − a)2 + 1

are the square roots of the numbers a ± i. Then, using the fact that the numbers

z0 = 1√
2
(
√

A + a + i
√

A − a)

and −z0 are the square roots of a + i (Exercise 5, Sec. 10), verify that ± z0 are
the square roots of a − i and hence that z0 and −z0 are the only zeros of q(z) in
the upper half plane Im z ≥ 0.

(b) Using the method derived in Exercise 7, Sec. 76, and keeping in mind that z2
0 = a + i

for purposes of simplification, show that the point z0 in part (a) is a pole of order 2
of the function f (z) = 1/[q(z)]2 and that the residue B1 at z0 can be written

B1 = − q ′′(z0)

[q ′(z0)]3
= a − i(2a2 + 3)

16A2z0
.

After observing that q ′(−z) = − q ′(z) and q ′′(−z) = q ′′(z), use the same method
to show that the point −z0 in part (a) is also a pole of order 2 of the function
f (z), with residue

B2 =
{

q ′′(z0)

[q ′(z0)]3

}
= −B1.

Then obtain the expression

B1 + B2 = 1

8A2i
Im

[−a + i(2a2 + 3)

z0

]

for the sum of these residues.
(c) Refer to part (a) and show that |q(z)| ≥ (R − |z0|)4 if |z| = R, where R > |z0|.

Then, with the aid of the final result in part (b), complete the derivation of the
integration formula.

80. IMPROPER INTEGRALS FROM FOURIER ANALYSIS

Residue theory can be useful in evaluating convergent improper integrals of the
form ∫ ∞

−∞
f (x) sin ax dx or

∫ ∞

−∞
f (x) cos ax dx,(1)

∗See pp. 359–364 of the book by Brown, Hoyler, and Bierwirth that is listed in Appendix 1.




