(5), and hence its left-hand side, tends to zero as *R* tends to infinity. For the quantity

$$
M_R \pi R = \frac{\pi R^2}{(R - \sqrt{2})^2} = \frac{\pi}{\left(1 - \frac{\sqrt{2}}{R}\right)^2}
$$

does not tend to zero. The above theorem does, however, provide the desired limit, namely

$$
\lim_{R \to \infty} \int_{C_R} f(z)e^{iz} dz = 0,
$$

since

$$
M_R = \frac{\frac{1}{R}}{\left(1 - \frac{\sqrt{2}}{R}\right)^2} \to 0 \quad \text{as} \quad R \to \infty.
$$

So it does, indeed, follow from inequality (5) that the left-hand side there tends to zero as *R* tends to infinity. Consequently, equation (4), together with expression (3) for the residue B_1 , tells us that

(6) P.V.
$$
\int_{-\infty}^{\infty} \frac{x \sin x \, dx}{x^2 + 2x + 2} = \text{Im}(2\pi i B_1) = \frac{\pi}{e} (\sin 1 + \cos 1).
$$

EXERCISES

Use residues to evaluate the improper integrals in Exercises 1 through 8.

1.
$$
\int_{-\infty}^{\infty} \frac{\cos x \, dx}{(x^2 + a^2)(x^2 + b^2)} \quad (a > b > 0).
$$

\nAns.
$$
\frac{\pi}{a^2 - b^2} \left(\frac{e^{-b}}{b} - \frac{e^{-a}}{a}\right).
$$

\n2.
$$
\int_{0}^{\infty} \frac{\cos ax}{x^2 + 1} dx \quad (a > 0).
$$

\nAns.
$$
\frac{\pi}{2} e^{-a}.
$$

\n3.
$$
\int_{0}^{\infty} \frac{\cos ax}{(x^2 + b^2)^2} dx \quad (a > 0, b > 0).
$$

\nAns.
$$
\frac{\pi}{4b^3} (1 + ab)e^{-ab}.
$$

\n4.
$$
\int_{0}^{\infty} \frac{x \sin 2x}{x^2 + 3} dx.
$$

\nAns.
$$
\frac{\pi}{2} \exp(-2\sqrt{3}).
$$

5.
$$
\int_{-\infty}^{\infty} \frac{x \sin ax}{x^4 + 4} dx \quad (a > 0).
$$

\nAns. $\frac{\pi}{2} e^{-a} \sin a$.
\n6.
$$
\int_{-\infty}^{\infty} \frac{x^3 \sin ax}{x^4 + 4} dx \quad (a > 0).
$$

\nAns. $\pi e^{-a} \cos a$.
\n7.
$$
\int_{-\infty}^{\infty} \frac{x \sin x dx}{(x^2 + 1)(x^2 + 4)}.
$$

\n8.
$$
\int_{0}^{\infty} \frac{x^3 \sin x dx}{(x^2 + 1)(x^2 + 9)}.
$$

Use residues to find the Cauchy principal values of the improper integrals in Exercises 9 through 11.

9.
$$
\int_{-\infty}^{\infty} \frac{\sin x \, dx}{x^2 + 4x + 5}
$$

\nAns. $-\frac{\pi}{e} \sin 2$.
\n10.
$$
\int_{-\infty}^{\infty} \frac{(x+1) \cos x}{x^2 + 4x + 5} \, dx
$$
.
\nAns. $\frac{\pi}{e} (\sin 2 - \cos 2)$.
\n11.
$$
\int_{-\infty}^{\infty} \frac{\cos x \, dx}{(x+a)^2 + b^2} \quad (b > 0)
$$
.

12. Follow the steps below to evaluate the *Fresnel integrals*, which are important in diffraction theory:

$$
\int_0^{\infty} \cos(x^2) \, dx = \int_0^{\infty} \sin(x^2) \, dx = \frac{1}{2} \sqrt{\frac{\pi}{2}}.
$$

(a) By integrating the function $exp(iz^2)$ around the positively oriented boundary of the sector $0 \le r \le R$, $0 \le \theta \le \pi/4$ (Fig. 99) and appealing to the Cauchy–Goursat theorem, show that

$$
\int_0^R \cos(x^2) \, dx = \frac{1}{\sqrt{2}} \int_0^R e^{-r^2} \, dr - \text{Re} \int_{C_R} e^{iz^2} \, dz
$$

and

$$
\int_0^R \sin(x^2) \, dx = \frac{1}{\sqrt{2}} \int_0^R e^{-r^2} \, dr - \text{Im} \int_{C_R} e^{iz^2} \, dz,
$$

where C_R is the arc $z = Re^{i\theta}$ $(0 \le \theta \le \pi/4)$.

(b) Show that the value of the integral along the arc C_R in part *(a)* tends to zero as *R* tends to infinity by obtaining the inequality

$$
\left| \int_{C_R} e^{iz^2} dz \right| \leq \frac{R}{2} \int_0^{\pi/2} e^{-R^2 \sin \phi} d\phi
$$

and then referring to the form (2), Sec. 81, of Jordan's inequality.

(c) Use the results in parts *(a)* and *(b)*, together with the known integration formula[∗]

$$
\int_0^\infty e^{-x^2} dx = \frac{\sqrt{\pi}}{2},
$$

to complete the exercise.

82. INDENTED PATHS

In this and the following section, we illustrate the use of *indented* paths. We begin with an important limit that will be used in the example in this section.

Theorem. Suppose that

- *(a) a function* $f(z)$ *has a simple pole at a point* $z = x_0$ *on the real axis, with a Laurent series representation in a punctured disk* $0 < |z - x_0| < R_2$ (Fig. 100) *and with residue* B_0 ;
- *(b)* C_{ρ} *denotes the upper half of a circle* $|z x_0| = \rho$ *, where* $\rho < R_2$ *and the clockwise direction is taken.*

Then

$$
\lim_{\rho \to 0} \int_{C_{\rho}} f(z) dz = -B_0 \pi i.
$$

FIGURE 100

[∗]See the footnote with Exercise 4, Sec. 49.