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(5), and hence its left-hand side, tends to zero as R tends to infinity. For the
quantity

MRπR = πR2

(R − √
2)2

= π(
1 −

√
2

R

)2

does not tend to zero. The above theorem does, however, provide the desired limit,
namely

lim
R→∞

∫
CR

f (z)eiz dz = 0,

since

MR =
1

R(
1 −

√
2

R

)2
→ 0 as R → ∞ .

So it does, indeed, follow from inequality (5) that the left-hand side there tends
to zero as R tends to infinity. Consequently, equation (4), together with expression
(3) for the residue B1, tells us that

P.V.
∫ ∞

−∞

x sin x dx

x2 + 2x + 2
= Im(2πiB1) = π

e
(sin 1 + cos 1).(6)

EXERCISES

Use residues to evaluate the improper integrals in Exercises 1 through 8.

1.
∫ ∞

−∞

cos x dx

(x2 + a2)(x2 + b2)
(a > b > 0).

Ans.
π

a2 − b2

(
e−b

b
− e−a

a

)
.

2.
∫ ∞

0

cos ax

x2 + 1
dx (a > 0).

Ans.
π

2
e−a.

3.
∫ ∞

0

cos ax

(x2 + b2)2
dx (a > 0, b > 0).

Ans.
π

4b3
(1 + ab)e−ab.

4.
∫ ∞

0

x sin 2x

x2 + 3
dx.

Ans.
π

2
exp(−2

√
3).
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5.
∫ ∞

−∞

x sin ax

x4 + 4
dx (a > 0).

Ans.
π

2
e−a sin a.

6.
∫ ∞

−∞

x3 sin ax

x4 + 4
dx (a > 0).

Ans. πe−a cos a.

7.
∫ ∞

−∞

x sin x dx

(x2 + 1)(x2 + 4)
.

8.
∫ ∞

0

x3 sin x dx

(x2 + 1)(x2 + 9)
.

Use residues to find the Cauchy principal values of the improper integrals in
Exercises 9 through 11.

9.
∫ ∞

−∞

sin x dx

x2 + 4x + 5
.

Ans. −π

e
sin 2.

10.
∫ ∞

−∞

(x + 1) cos x

x2 + 4x + 5
dx.

Ans.
π

e
(sin 2 − cos 2).

11.
∫ ∞

−∞

cos x dx

(x + a)2 + b2
(b > 0).

12. Follow the steps below to evaluate the Fresnel integrals, which are important in
diffraction theory: ∫ ∞

0
cos(x2) dx =

∫ ∞

0
sin(x2) dx = 1

2

√
π

2
.

(a) By integrating the function exp(iz2) around the positively oriented boundary of the
sector 0 ≤ r ≤ R, 0 ≤ θ ≤ π/4 (Fig. 99) and appealing to the Cauchy–Goursat
theorem, show that∫ R

0
cos(x2) dx = 1√

2

∫ R

0
e−r2

dr − Re
∫

CR

eiz2
dz

xO R

y

CR

Rei   /4

FIGURE 99
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and ∫ R

0
sin(x2) dx = 1√

2

∫ R

0
e−r2

dr − Im
∫

CR

eiz2
dz,

where CR is the arc z = Reiθ (0 ≤ θ ≤ π/4).
(b) Show that the value of the integral along the arc CR in part (a) tends to zero as

R tends to infinity by obtaining the inequality∣∣∣∣
∫

CR

eiz2
dz

∣∣∣∣ ≤ R

2

∫ π/2

0
e−R2 sin φdφ

and then referring to the form (2), Sec. 81, of Jordan’s inequality.
(c) Use the results in parts (a) and (b), together with the known integration formula∗∫ ∞

0
e−x2

dx =
√

π

2
,

to complete the exercise.

82. INDENTED PATHS

In this and the following section, we illustrate the use of indented paths. We begin
with an important limit that will be used in the example in this section.

Theorem. Suppose that

(a) a function f (z) has a simple pole at a point z = x0 on the real axis, with a Laurent
series representation in a punctured disk 0 < |z − x0| < R2 (Fig. 100) and with
residue B0 ;

(b) Cρ denotes the upper half of a circle |z − x0| = ρ, where ρ < R2 and the clock-
wise direction is taken.

Then

lim
ρ→0

∫
Cρ

f (z) dz = −B0 πi.

xx0O

y

R2

FIGURE 100

∗See the footnote with Exercise 4, Sec. 49.




