

FIGURE 14

(4)
$$
\cos^2 \frac{\alpha}{2} = \frac{1 + \cos \alpha}{2}, \quad \sin^2 \frac{\alpha}{2} = \frac{1 - \cos \alpha}{2}
$$

enable us to write

$$
\cos^2 \frac{\pi}{12} = \frac{1}{2} \left(1 + \cos \frac{\pi}{6} \right) = \frac{1}{2} \left(1 + \frac{\sqrt{3}}{2} \right) = \frac{2 + \sqrt{3}}{4},
$$

$$
\sin^2 \frac{\pi}{12} = \frac{1}{2} \left(1 - \cos \frac{\pi}{6} \right) = \frac{1}{2} \left(1 - \frac{\sqrt{3}}{2} \right) = \frac{2 - \sqrt{3}}{4}.
$$

Consequently,

$$
c_0 = \sqrt{2} \left(\sqrt{\frac{2 + \sqrt{3}}{4}} + i \sqrt{\frac{2 - \sqrt{3}}{4}} \right) = \frac{1}{\sqrt{2}} \left(\sqrt{2 + \sqrt{3}} + i \sqrt{2 - \sqrt{3}} \right).
$$

Since $c_1 = -c_0$, the two square roots of $\sqrt{3} + i$ are, then,

(5)
$$
\pm \frac{1}{\sqrt{2}} \left(\sqrt{2 + \sqrt{3}} + i \sqrt{2 - \sqrt{3}} \right).
$$

EXERCISES

1. Find the square roots of *(a)* 2*i*; *(b)* 1 – $\sqrt{3}$ *i* and express them in rectangular coordinates. √

Ans. (a)
$$
\pm (1+i)
$$
; (b) $\pm \frac{\sqrt{3}-i}{\sqrt{2}}$.

2. In each case, find all the roots in rectangular coordinates, exhibit them as vertices of certain squares, and point out which is the principal root:

(a)
$$
(-16)^{1/4}
$$
; (b) $(-8 - 8\sqrt{3}i)^{1/4}$.
\n*Ans.* (a) $\pm \sqrt{2}(1+i)$, $\pm \sqrt{2}(1-i)$; (b) $\pm (\sqrt{3}-i)$, $\pm (1+\sqrt{3}i)$.

30 COMPLEX NUMBERS **CHAP.** 1

3. In each case, find all the roots in rectangular coordinates, exhibit them as vertices of certain regular polygons, and identify the principal root:

$$
(a) (-1)^{1/3}; \t(b) 8^{1/6}.
$$

Ans. (b)
$$
\pm\sqrt{2}
$$
, $\pm\frac{1+\sqrt{3}i}{\sqrt{2}}$, $\pm\frac{1-\sqrt{3}i}{\sqrt{2}}$.

4. According to Sec. 9, the three cube roots of a nonzero complex number z_0 can be written c_0 , $c_0 \omega_3$, $c_0 \omega_3^2$ where c_0 is the principal cube root of z_0 and

$$
\omega_3 = \exp\left(i\frac{2\pi}{3}\right) = \frac{-1 + \sqrt{3}i}{2}.
$$

Show that if $z_0 = -4\sqrt{2} + 4\sqrt{2}i$, then $c_0 = \sqrt{2}(1+i)$ and the other two cube roots are, in rectangular form, the numbers

$$
c_0\omega_3 = \frac{-(\sqrt{3}+1)+(\sqrt{3}-1)i}{\sqrt{2}}, \quad c_0\omega_3^2 = \frac{(\sqrt{3}-1)-(\sqrt{3}+1)i}{\sqrt{2}}.
$$

5. (a) Let a denote any fixed real number and show that the two square roots of $a + i$ are

$$
\pm \sqrt{A} \exp\left(i\frac{\alpha}{2}\right)
$$

where $A = \sqrt{a^2 + 1}$ and $\alpha = \text{Arg}(a + i)$.

(b) With the aid of the trigonometric identities (4) in Example 3 of Sec. 10, show that the square roots obtained in part *(a)* can be written

$$
\pm \frac{1}{\sqrt{2}} \left(\sqrt{A+a} + i \sqrt{A-a} \right).
$$

(Note that this becomes the final result in Example 3, Sec. 10, when $a = \sqrt{3}$.) **6.** Find the four zeros of the polynomial $z^4 + 4$, one of them being

$$
z_0 = \sqrt{2} e^{i\pi/4} = 1 + i.
$$

Then use those zeros to factor $z^2 + 4$ into quadratic factors with real coefficients.

Ans.
$$
(z^2 + 2z + 2)(z^2 - 2z + 2).
$$

7. Show that if *c* is any *n*th root of unity other than unity itself, then

$$
1 + c + c^2 + \dots + c^{n-1} = 0.
$$

Suggestion: Use the first identity in Exercise 9, Sec. 8.

8. *(a)* Prove that the usual formula solves the quadratic equation

$$
az^2 + bz + c = 0 \qquad (a \neq 0)
$$

when the coefficients *a*, *b*, and *c* are complex numbers. Specifically, by completing the square on the left-hand side, derive the *quadratic formula*

$$
z = \frac{-b + (b^2 - 4ac)^{1/2}}{2a},
$$

where both square roots are to be considered when $b^2 - 4ac \neq 0$,

2

(b) Use the result in part *(a)* to find the roots of the equation $z^2 + 2z + (1 - i) = 0$. *Ans. (b)* $\left(-1+\frac{1}{\sqrt{2}}\right)+\frac{i}{\sqrt{2}}$ $\left(-1 - \frac{1}{4}\right)$ $\Big) - \frac{i}{\sqrt{2}}$.

2

9. Let $z = re^{i\theta}$ be a nonzero complex number and *n* a negative integer $(n = -1, -2, \ldots)$. Then define $z^{1/n}$ by means of the equation $z^{1/n} = (z^{-1})^{1/m}$ where $m = -n$. By showing that the *m* values of $(z^{1/m})^{-1}$ and $(z^{-1})^{1/m}$ are the same, verify that $z^{1/n} = (z^{1/m})^{-1}$. (Compare with Exercise 7, Sec. 8.)

2

11. REGIONS IN THE COMPLEX PLANE

In this section, we are concerned with sets of complex numbers, or points in the *z* plane, and their closeness to one another. Our basic tool is the concept of an *ε neighborhood*

$$
(1) \t\t |z-z_0|<\varepsilon
$$

of a given point z_0 . It consists of all points z lying inside but not on a circle centered at z_0 and with a specified positive radius ε (Fig. 15). When the value of ε is understood or is immaterial in the discussion, the set (1) is often referred to as just a neighborhood. Occasionally, it is convenient to speak of a *deleted neighborhood*, or punctured disk,

$$
(2) \t\t\t 0 < |z - z_0| < \varepsilon
$$

consisting of all points *z* in an *ε* neighborhood of z_0 except for the point z_0 itself.

A point *z*⁰ is said to be an *interior point* of a set *S* whenever there is some neighborhood of z_0 that contains only points of *S*; it is called an *exterior point* of *S* when there exists a neighborhood of it containing no points of *S*. If z_0 is neither of these, it is a *boundary point* of *S*. A boundary point is, therefore, a point all of whose neighborhoods contain at least one point in *S* and at least one point not in *S*. The totality of all boundary points is called the *boundary* of *S*. The circle $|z| = 1$, for instance, is the boundary of each of the sets

$$
(3) \t|z| < 1 \quad \text{and} \quad |z| \le 1.
$$