290 Applications of Residues

Note that because |a| < 1,

$$|z_2| = \frac{1 + \sqrt{1 - a^2}}{|a|} > 1.$$

Also, since $|z_1z_2| = 1$, it follows that $|z_1| < 1$. Hence there are no singular points on *C*, and the only one interior to it is the point z_1 . The corresponding residue B_1 is found by writing

$$f(z) = \frac{\phi(z)}{z - z_1} \quad \text{where} \quad \phi(z) = \frac{2/a}{z - z_2}.$$

This shows that z_1 is a simple pole and that

$$B_1 = \phi(z_1) = \frac{2/a}{z_1 - z_2} = \frac{1}{i\sqrt{1 - a^2}}.$$

Consequently,

$$\int_C \frac{2/a}{z^2 + (2i/a)z - 1} \, dz = 2\pi i B_1 = \frac{2\pi}{\sqrt{1 - a^2}};$$

and integration formula (5) follows.

The method just illustrated applies equally well when the arguments of the sine and cosine are integral multiples of θ . One can use equation (2) to write, for example,

$$\cos 2\theta = \frac{e^{i2\theta} + e^{-i2\theta}}{2} = \frac{(e^{i\theta})^2 + (e^{i\theta})^{-2}}{2} = \frac{z^2 + z^{-2}}{2}.$$

EXERCISES

Use residues to evaluate the definite integrals in Exercises 1 through 7.

1.
$$\int_{0}^{2\pi} \frac{d\theta}{5+4\sin\theta}.$$

Ans. $\frac{2\pi}{3}.$
2.
$$\int_{-\pi}^{\pi} \frac{d\theta}{1+\sin^{2}\theta}.$$

Ans. $\sqrt{2\pi}.$
3.
$$\int_{0}^{2\pi} \frac{\cos^{2}3\theta \,d\theta}{5-4\cos 2\theta}.$$

Ans. $\frac{3\pi}{8}.$

sec. 86

4.
$$\int_{0}^{2\pi} \frac{d\theta}{1 + a\cos\theta} \quad (-1 < a < 1).$$
Ans.
$$\frac{2\pi}{\sqrt{1 - a^{2}}}.$$
5.
$$\int_{0}^{\pi} \frac{\cos 2\theta \, d\theta}{1 - 2a\cos\theta + a^{2}} \quad (-1 < a < 1).$$
Ans.
$$\frac{a^{2}\pi}{1 - a^{2}}.$$
6.
$$\int_{0}^{\pi} \frac{d\theta}{(a + \cos\theta)^{2}} \quad (a > 1).$$
Ans.
$$\frac{a\pi}{(\sqrt{a^{2} - 1})^{3}}.$$
7.
$$\int_{0}^{\pi} \sin^{2n}\theta \, d\theta \quad (n = 1, 2, ...).$$
Ans.
$$\frac{(2n)!}{2^{2n}(n!)^{2}}\pi.$$

86. ARGUMENT PRINCIPLE

A function f is said to be *meromorphic* in a domain D if it is analytic throughout D except for poles. Suppose now that f is meromorphic in the domain interior to a positively oriented simple closed contour C and that it is analytic and nonzero on C. The image Γ of C under the transformation w = f(z) is a closed contour, not necessarily simple, in the w plane (Fig. 106). As a point z traverses C in the positive direction, its images w traverses Γ in a particular direction that determines the orientation of Γ . Note that since f has no zeros on C, the contour Γ does not pass through the origin in the w plane.

Let w_0 and w be points on Γ , where w_0 is fixed and ϕ_0 is a value of arg w_0 . Then let arg w vary continuously, starting with the value ϕ_0 , as the point w begins at the point w_0 and traverses Γ once in the direction of orientation assigned to it