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and let z be any point on a circle |z| = R, where R > 1. When such a point is
taken, we see that

|f (z)| = |an|Rn.

Also,

|g(z)| ≤ |a0| + |a1|R + |a2|R2 + · · · + |an−1|Rn−1.

Consequently, since R > 1,

|g(z)| ≤ |a0|Rn−1 + |a1|Rn−1 + |a2|Rn−1 + · · · + |an−1|Rn−1;
and it follows that

|g(z)|
|f (z)| ≤ |a0| + |a1| + |a2| + · · · + |an−1|

|an|R < 1

if, in addition to being greater than unity,

R >
|a0| + |a1| + |a2| + · · · + |an−1|

|an| .(4)

That is, |f (z)| > |g(z)| when R > 1 and inequality (4) is satisfied. Rouché’s theorem
then tells us that f (z) and f (z) + g(z) have the same number of zeros, namely
n, inside C. Hence we may conclude that P(z) has precisely n zeros, counting
multiplicities, in the plane.

Note how Liouville’s theorem in Sec. 53 only ensured the existence of at least
one zero of a polynomial; but Rouché’s theorem actually ensures the existence of
n zeros, counting multiplicities.

EXERCISES
1. Let C denote the unit circle |z| = 1, described in the positive sense. Use the theorem

in Sec. 86 to determine the value of �C arg f (z) when

(a) f (z) = z2 ; (b) f (z) = (z3 + 2)/z ; (c) f (z) = (2z − 1)7/z3.

Ans. (a) 4π ; (b) −2π ; (c) 8π .

2. Let f be a function which is analytic inside and on a positively oriented simple closed
contour C, and suppose that f (z) is never zero on C. Let the image of C under the
transformation w = f (z) be the closed contour � shown in Fig. 107. Determine the
value of �C arg f (z) from that figure; and, with the aid of the theorem in Sec. 86,
determine the number of zeros, counting multiplicities, of f interior to C.

Ans. 6π ; 3.

3. Using the notation in Sec. 86, suppose that � does not enclose the origin w = 0 and
that there is a ray from that point which does not intersect �. By observing that the
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FIGURE 107

absolute value of �C arg f (z) must be less than 2π when a point z makes one cycle
around C and recalling that �C arg f (z) is an integral multiple of 2π , point out why
the winding number of � with respect to the origin w = 0 must be zero.

4. Suppose that a function f is meromorphic in the domain D interior to a simple closed
contour C on which f is analytic and nonzero, and let D0 denote the domain consisting
of all points in D except for poles. Point out how it follows from the lemma in Sec. 27
and Exercise 10, Sec. 76, that if f (z) is not identically equal to zero in D0 , then the
zeros of f in D are all of finite order and that they are finite in number.

Suggestion: Note that if a point z0 in D is a zero of f that is not of finite order, then
there must be a neighborhood of z0 throughout which f (z) is identically equal to zero.

5. Suppose that a function f is analytic inside and on a positively oriented simple closed
contour C and that it has no zeros on C. Show that if f has n zeros zk (k = 1, 2, . . . , n)

inside C, where each zk is of multiplicity mk , then∫
C

zf ′(z)
f (z)

dz = 2πi

n∑
k=1

mkzk.

[Compare with equation (8), Sec. 86, when P = 0 there.]

6. Determine the number of zeros, counting multiplicities, of the polynomial

(a) z6 − 5z4 + z3 − 2z ; (b) 2z4 − 2z3 + 2z2 − 2z + 9

inside the circle |z| = 1.
Ans. (a) 4 ; (b) 0.

7. Determine the number of zeros, counting multiplicities, of the polynomial

(a) z4 + 3z3 + 6 ; (b) z4 − 2z3 + 9z2 + z − 1; (c) z5 + 3z3 + z2 + 1

inside the circle |z| = 2.
Ans. (a) 3 ; (b) 2 ; (c) 5.

8. Determine the number of roots, counting multiplicities, of the equation

2z5 − 6z2 + z + 1 = 0

in the annulus 1 ≤ |z| < 2.
Ans. 3.
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9. Show that if c is a complex number such that |c| > e, then the equation czn = ez has
n roots, counting multiplicities, inside the circle |z| = 1.

10. Let two functions f and g be as in the statement of Rouché’s theorem in Sec. 87, and
let the orientation of the contour C there be positive. Then define the function

	(t) = 1

2πi

∫
C

f ′(z) + tg′(z)
f (z) + tg(z)

dz (0 ≤ t ≤ 1)

and follow these steps below to give another proof of Rouché’s theorem.

(a) Point out why the denominator in the integrand of the integral defining 	(t) is
never zero on C. This ensures the existence of the integral.

(b) Let t and t0 be any two points in the interval 0 ≤ t ≤ 1 and show that

|	(t) − 	(t0)| = |t − t0|
2π

∣∣∣∣
∫

C

fg′ − f ′g
(f + tg)(f + t0g)

dz

∣∣∣∣ .

Then, after pointing out why∣∣∣∣ fg′ − f ′g
(f + tg)(f + t0g)

∣∣∣∣ ≤ |fg′ − f ′g|
(|f | − |g|)2

at points on C, show that there is a positive constant A, which is independent of
t and t0, such that

|	(t) − 	(t0)| ≤ A|t − t0|.
Conclude from this inequality that 	(t) is continuous on the interval 0 ≤ t ≤ 1.

(c) By referring to equation (8), Sec. 86, state why the value of the function 	 is, for
each value of t in the interval 0 ≤ t ≤ 1, an integer representing the number of
zeros of f (z) + tg(z) inside C. Then conclude from the fact that 	 is continuous,
as shown in part (b), that f (z) and f (z) + g(z) have the same number of zeros,
counting multiplicities, inside C.

88. INVERSE LAPLACE TRANSFORMS

Suppose that a function F of the complex variable s is analytic throughout the
finite s plane except for a finite number of isolated singularities. Then let LR denote
a vertical line segment from s = γ − iR to s = γ + iR, where the constant γ is
positive and large enough that the singularities of F all lie to the left of that segment
(Fig. 108). A new function f of the real variable t is defined for positive values of
t by means of the equation

f (t) = 1

2πi
lim

R→∞

∫
LR

estF (s) ds (t > 0),(1)

provided this limit exists. Expression (1) is usually written

f (t) = 1

2πi
P.V.

∫ γ+i∞

γ−i∞
estF (s) ds (t > 0)(2)




