and let *z* be any point on a circle $|z| = R$, where $R > 1$. When such a point is taken, we see that

$$
|f(z)| = |a_n|R^n.
$$

Also,

$$
|g(z)| \leq |a_0| + |a_1|R + |a_2|R^2 + \cdots + |a_{n-1}|R^{n-1}.
$$

Consequently, since $R > 1$,

$$
|g(z)| \leq |a_0|R^{n-1} + |a_1|R^{n-1} + |a_2|R^{n-1} + \cdots + |a_{n-1}|R^{n-1};
$$

and it follows that

$$
\frac{|g(z)|}{|f(z)|} \le \frac{|a_0| + |a_1| + |a_2| + \dots + |a_{n-1}|}{|a_n|R} < 1
$$

if, in addition to being greater than unity,

(4)
$$
R > \frac{|a_0| + |a_1| + |a_2| + \cdots + |a_{n-1}|}{|a_n|}.
$$

That is, $|f(z)| > |g(z)|$ when $R > 1$ and inequality (4) is satisfied. Rouche's theorem then tells us that $f(z)$ and $f(z) + g(z)$ have the same number of zeros, namely *n*, inside *C*. Hence we may conclude that $P(z)$ has precisely *n* zeros, counting multiplicities, in the plane.

Note how Liouville's theorem in Sec. 53 only ensured the existence of at least one zero of a polynomial; but Rouche's theorem actually ensures the existence of ´ *n* zeros, counting multiplicities.

EXERCISES

- **1.** Let C denote the unit circle $|z| = 1$, described in the positive sense. Use the theorem in Sec. 86 to determine the value of Δ_C arg $f(z)$ when
	- $f(z) = z^2$; *(b)* $f(z) = (z^3 + 2)/z$; *(c)* $f(z) = (2z 1)^7/z^3$. *Ans*. *(a)* $4π$; *(b)* $-2π$; *(c)* $8π$.
- **2.** Let *f* be a function which is analytic inside and on a positively oriented simple closed contour *C*, and suppose that $f(z)$ is never zero on *C*. Let the image of *C* under the transformation $w = f(z)$ be the closed contour Γ shown in Fig. 107. Determine the value of $\Delta_C \arg f(z)$ from that figure; and, with the aid of the theorem in Sec. 86, determine the number of zeros, counting multiplicities, of *f* interior to *C*. *Ans*. 6*π*; 3.
- **3.** Using the notation in Sec. 86, suppose that Γ does not enclose the origin $w = 0$ and that there is a ray from that point which does not intersect Γ . By observing that the

absolute value of Δ_C arg $f(z)$ must be less than 2π when a point *z* makes one cycle around *C* and recalling that Δ_C arg $f(z)$ is an integral multiple of 2π , point out why the winding number of Γ with respect to the origin $w = 0$ must be zero.

4. Suppose that a function *f* is meromorphic in the domain *D* interior to a simple closed contour *C* on which f is analytic and nonzero, and let D_0 denote the domain consisting of all points in *D* except for poles. Point out how it follows from the lemma in Sec. 27 and Exercise 10, Sec. 76, that if $f(z)$ is not identically equal to zero in D_0 , then the zeros of *f* in *D* are all of finite order and that they are finite in number.

Suggestion: Note that if a point z_0 in *D* is a zero of *f* that is not of finite order, then there must be a neighborhood of z_0 throughout which $f(z)$ is identically equal to zero.

5. Suppose that a function *f* is analytic inside and on a positively oriented simple closed contour *C* and that it has no zeros on *C*. Show that if *f* has *n* zeros z_k ($k = 1, 2, ..., n$) inside *C*, where each z_k is of multiplicity m_k , then

$$
\int_C \frac{zf'(z)}{f(z)} dz = 2\pi i \sum_{k=1}^n m_k z_k.
$$

[Compare with equation (8), Sec. 86, when $P = 0$ there.]

6. Determine the number of zeros, counting multiplicities, of the polynomial (a) $z^6 - 5z^4 + z^3 - 2z$; *(b)* $2z^4 - 2z^3 + 2z^2 - 2z + 9$ inside the circle $|z| = 1$.

Ans. *(a)* 4 ; *(b)* 0.

- **7.** Determine the number of zeros, counting multiplicities, of the polynomial (a) $z^4 + 3z^3 + 6$; *(b)* $z^4 - 2z^3 + 9z^2 + z - 1$; *(c)* $z^5 + 3z^3 + z^2 + 1$ inside the circle $|z| = 2$. *Ans*. *(a)* 3 ; *(b)* 2 ; *(c)* 5.
- **8.** Determine the number of roots, counting multiplicities, of the equation

$$
2z^5 - 6z^2 + z + 1 = 0
$$

in the annulus $1 \leq |z| < 2$. *Ans*. 3.

298 Applications of Residues chap. 7

- **9.** Show that if *c* is a complex number such that $|c| > e$, then the equation $cz^n = e^z$ has *n* roots, counting multiplicities, inside the circle $|z| = 1$.
- **10.** Let two functions f and g be as in the statement of Rouché's theorem in Sec. 87, and let the orientation of the contour *C* there be positive. Then define the function

$$
\Phi(t) = \frac{1}{2\pi i} \int_C \frac{f'(z) + tg'(z)}{f(z) + tg(z)} dz \qquad (0 \le t \le 1)
$$

and follow these steps below to give another proof of Rouché's theorem.

- (a) Point out why the denominator in the integrand of the integral defining $\Phi(t)$ is never zero on *C*. This ensures the existence of the integral.
- *(b)* Let *t* and t_0 be any two points in the interval $0 \le t \le 1$ and show that

$$
|\Phi(t) - \Phi(t_0)| = \frac{|t - t_0|}{2\pi} \left| \int_C \frac{fg' - f'g}{(f + tg)(f + t_0g)} \, dz \right|.
$$

Then, after pointing out why

$$
\left| \frac{fg' - f'g}{(f + tg)(f + t_0g)} \right| \le \frac{|fg' - f'g|}{(|f| - |g|)^2}
$$

at points on *C*, show that there is a positive constant *A*, which is independent of *t* and *t*0, such that

$$
|\Phi(t) - \Phi(t_0)| \le A|t - t_0|.
$$

Conclude from this inequality that $\Phi(t)$ is continuous on the interval $0 \le t \le 1$.

(c) By referring to equation (8), Sec. 86, state why the value of the function Φ is, for each value of *t* in the interval $0 \le t \le 1$, an integer representing the number of zeros of $f(z) + tg(z)$ inside *C*. Then conclude from the fact that Φ is continuous, as shown in part *(b)*, that $f(z)$ and $f(z) + g(z)$ have the same number of zeros, counting multiplicities, inside *C*.

88. INVERSE LAPLACE TRANSFORMS

Suppose that a function F of the complex variable s is analytic throughout the finite *s* plane except for a finite number of isolated singularities. Then let L_R denote a vertical line segment from $s = \gamma - iR$ to $s = \gamma + iR$, where the constant γ is positive and large enough that the singularities of *F* all lie to the left of that segment (Fig. 108). A new function *f* of the real variable *t* is defined for positive values of *t* by means of the equation

(1)
$$
f(t) = \frac{1}{2\pi i} \lim_{R \to \infty} \int_{L_R} e^{st} F(s) ds \qquad (t > 0),
$$

provided this limit exists. Expression (1) is usually written

(2)
$$
f(t) = \frac{1}{2\pi i} P.V. \int_{\gamma - i\infty}^{\gamma + i\infty} e^{st} F(s) ds \qquad (t > 0)
$$