EXERCISES

1. Find the linear fractional transformation that maps the points $z_1 = 2$, $z_2 = i$, $z_3 = -2$ onto the points $w_1 = 1, w_2 = i, w_3 = -1$.

$$
Ans. \ w = \frac{3z + 2i}{iz + 6}.
$$

- **2.** Find the linear fractional transformation that maps the points $z_1 = -i$, $z_2 = 0$, $z_3 = i$ onto the points $w_1 = -1$, $w_2 = i$, $w_3 = 1$. Into what curve is the imaginary axis $x = 0$ transformed?
- **3.** Find the bilinear transformation that maps the points $z_1 = \infty$, $z_2 = i$, $z_3 = 0$ onto the points $w_1 = 0, w_2 = i, w_3 = \infty$.

Ans.
$$
w = -1/z
$$
.

4. Find the bilinear transformation that maps distinct points z_1 , z_2 , z_3 onto the points $w_1 = 0, w_2 = 1, w_3 = \infty.$

Ans.
$$
w = \frac{(z - z_1)(z_2 - z_3)}{(z - z_3)(z_2 - z_1)}.
$$

5. Show that a composition of two linear fractional transformations is again a linear fractional transformation, as stated in Sec. 93. To do this, consider two such transformations

$$
T(z) = \frac{a_1 z + b_1}{c_1 z + d_1} \quad (a_1 d_1 - b_1 c_1 \neq 0)
$$

and

$$
S(z) = \frac{a_2 z + b_2}{c_2 z + d_2} \quad (a_2 d_2 - b_2 c_2 \neq 0).
$$

Then show that the composition *S*[$T(z)$] has the form

$$
S[T(z)] = \frac{a_3 z + b_3}{c_3 z + d_3},
$$

where

$$
a_3d_3 - b_3c_3 = (a_1d_1 - b_1c_1)(a_2d_2 - b_2c_2) \neq 0.
$$

- **6.** A *fixed point* of a transformation $w = f(z)$ is a point z_0 such that $f(z_0) = z_0$. Show that every linear fractional transformation, with the exception of the identity transformation $w = z$, has at most two fixed points in the extended plane.
- **7.** Find the fixed points (see Exercise 6) of the transformation

(a)
$$
w = \frac{z-1}{z+1}
$$
; (b) $w = \frac{6z-9}{z}$.
Ans. (a) $z = \pm i$; (b) $z = 3$.

- **8.** Modify equation (1), Sec. 94, for the case in which both z_2 and w_2 are the point at infinity. Then show that any linear fractional transformation must be of the form $w = az (a \neq 0)$ when its fixed points (Exercise 6) are 0 and ∞ .
- **9.** Prove that if the origin is a fixed point (Exercise 6) of a linear fractional transformation, then the transformation can be written in the form

$$
w = \frac{z}{cz + d} \qquad (d \neq 0).
$$

10. Show that there is only one linear fractional transformation which maps three given distinct points z_1 , z_2 , and z_3 in the extended *z* plane onto three specified distinct points w_1, w_2 , and w_3 in the extended *w* plane.

Suggestion: Let *T* and *S* be two such linear fractional transformations. Then, after pointing out why $S^{-1}[T(z_k)] = z_k$ ($k = 1, 2, 3$), use the results in Exercises 5 and 6 to show that $S^{-1}[T(z)] = z$ for all *z*. Thus show that $T(z) = S(z)$ for all *z*.

- **11.** With the aid of equation (1), Sec. 94, prove that if a linear fractional transformation maps the points of the *x* axis onto points of the *u* axis, then the coefficients in the transformation are all real, except possibly for a common complex factor. The converse statement is evident.
- **12.** Let

$$
T(z) = \frac{az+b}{cz+d} \quad (ad - bc \neq 0)
$$

be any linear fractional transformation other than $T(z) = z$. Show that

 $T^{-1} = T$ if and only if $d = -a$.

Suggestion: Write the equation $T^{-1}(z) = T(z)$ as

$$
(a+d)[cz^2 + (d-a)z - b] = 0.
$$

95. MAPPINGS OF THE UPPER HALF PLANE

Let us determine all linear fractional transformations that map the upper half plane Im $z > 0$ onto the open disk $|w| < 1$ and the boundary Im $z = 0$ of the half plane onto the boundary $|w| = 1$ of the disk (Fig. 113).

Keeping in mind that points on the line $\text{Im } z = 0$ are to be transformed into points on the circle $|w| = 1$, we start by selecting the points $z = 0, z = 1$, and $z = \infty$ on the line and determining conditions on a linear fractional transformation

(1)
$$
w = \frac{az+b}{cz+d} \qquad (ad-bc \neq 0)
$$

which are necessary in order for the images of those points to have unit modulus.