EXERCISES

1. Find the linear fractional transformation that maps the points $z_1 = 2$, $z_2 = i$, $z_3 = -2$ onto the points $w_1 = 1$, $w_2 = i$, $w_3 = -1$.

Ans.
$$w = \frac{3z+2i}{iz+6}$$
.

- 2. Find the linear fractional transformation that maps the points $z_1 = -i$, $z_2 = 0$, $z_3 = i$ onto the points $w_1 = -1$, $w_2 = i$, $w_3 = 1$. Into what curve is the imaginary axis x = 0 transformed?
- Find the bilinear transformation that maps the points z₁ = ∞, z₂ = i, z₃ = 0 onto the points w₁ = 0, w₂ = i, w₃ = ∞.

Ans.
$$w = -1/z$$
.

4. Find the bilinear transformation that maps distinct points z_1, z_2, z_3 onto the points $w_1 = 0, w_2 = 1, w_3 = \infty$.

Ans.
$$w = \frac{(z-z_1)(z_2-z_3)}{(z-z_3)(z_2-z_1)}$$
.

5. Show that a composition of two linear fractional transformations is again a linear fractional transformation, as stated in Sec. 93. To do this, consider two such transformations

$$T(z) = \frac{a_1 z + b_1}{c_1 z + d_1} \quad (a_1 d_1 - b_1 c_1 \neq 0)$$

and

$$S(z) = \frac{a_2 z + b_2}{c_2 z + d_2} \quad (a_2 d_2 - b_2 c_2 \neq 0).$$

Then show that the composition S[T(z)] has the form

$$S[T(z)] = \frac{a_3 z + b_3}{c_3 z + d_3},$$

where

$$a_3d_3 - b_3c_3 = (a_1d_1 - b_1c_1)(a_2d_2 - b_2c_2) \neq 0.$$

- **6.** A *fixed point* of a transformation w = f(z) is a point z_0 such that $f(z_0) = z_0$. Show that every linear fractional transformation, with the exception of the identity transformation w = z, has at most two fixed points in the extended plane.
- 7. Find the fixed points (see Exercise 6) of the transformation

(a)
$$w = \frac{z-1}{z+1}$$
; (b) $w = \frac{6z-9}{z}$.
Ans. (a) $z = \pm i$; (b) $z = 3$.

- 8. Modify equation (1), Sec. 94, for the case in which both z_2 and w_2 are the point at infinity. Then show that any linear fractional transformation must be of the form $w = az \ (a \neq 0)$ when its fixed points (Exercise 6) are 0 and ∞ .
- **9.** Prove that if the origin is a fixed point (Exercise 6) of a linear fractional transformation, then the transformation can be written in the form

$$w = \frac{z}{cz+d} \qquad (d \neq 0).$$

10. Show that there is only one linear fractional transformation which maps three given distinct points z_1 , z_2 , and z_3 in the extended z plane onto three specified distinct points w_1 , w_2 , and w_3 in the extended w plane.

Suggestion: Let T and S be two such linear fractional transformations. Then, after pointing out why $S^{-1}[T(z_k)] = z_k$ (k = 1, 2, 3), use the results in Exercises 5 and 6 to show that $S^{-1}[T(z)] = z$ for all z. Thus show that T(z) = S(z) for all z.

- 11. With the aid of equation (1), Sec. 94, prove that if a linear fractional transformation maps the points of the x axis onto points of the u axis, then the coefficients in the transformation are all real, except possibly for a common complex factor. The converse statement is evident.
- 12. Let

$$T(z) = \frac{az+b}{cz+d} \quad (ad-bc \neq 0)$$

be any linear fractional transformation other than T(z) = z. Show that

 $T^{-1} = T$ if and only if d = -a.

Suggestion: Write the equation $T^{-1}(z) = T(z)$ as

 $(a+d)[cz^{2} + (d-a)z - b] = 0.$

95. MAPPINGS OF THE UPPER HALF PLANE

Let us determine all linear fractional transformations that map the upper half plane Im z > 0 onto the open disk |w| < 1 and the boundary Im z = 0 of the half plane onto the boundary |w| = 1 of the disk (Fig. 113).

Keeping in mind that points on the line Im z = 0 are to be transformed into points on the circle |w| = 1, we start by selecting the points z = 0, z = 1, and $z = \infty$ on the line and determining conditions on a linear fractional transformation

(1)
$$w = \frac{az+b}{cz+d} \qquad (ad-bc\neq 0)$$

which are necessary in order for the images of those points to have unit modulus.

SEC. 95