the choice of Θ_0 varies between $\Theta_0 = 0$ to $\Theta_0 = \pi$, the mapping of the half plane Y > 0 onto the strip is, in fact, one to one.

This shows that the composition (9) of the mappings (10) transforms the plane y > 0 onto the strip $0 < v < \pi$. Corresponding boundary points are shown in Fig. 19 of Appendix 2.

EXERCISES

1. Recall from Example 1 in Sec. 95 that the transformation

$$w = \frac{i - z}{i + z}$$

maps the half plane Im z > 0 onto the disk |w| < 1 and the boundary of the half plane onto the boundary of the disk. Show that a point z = x is mapped onto the point

$$w = \frac{1 - x^2}{1 + x^2} + i \frac{2x}{1 + x^2} \,,$$

and then complete the verification of the mapping illustrated in Fig. 13, Appendix 2, by showing that segments of the x axis are mapped as indicated there.

2. Verify the mapping shown in Fig. 12, Appendix 2, where

$$w = \frac{z - 1}{z + 1}.$$

Suggestion: Write the given transformation as a composition of the mappings

$$Z = iz$$
, $W = \frac{i-Z}{i+Z}$, $w = -W$.

Then refer to the mapping whose verification was completed in Exercise 1.

3. (a) By finding the inverse of the transformation

$$w = \frac{i - z}{i + z}$$

and appealing to Fig. 13, Appendix 2, whose verification was completed in Exercise 1, show that the transformation

$$w = i \frac{1 - z}{1 + z}$$

maps the disk $|z| \le 1$ onto the half plane $\operatorname{Im} w \ge 0$.

(b) Show that the linear fractional transformation

$$w = \frac{z - 2}{z}$$

can be written

$$Z = z - 1$$
, $W = i \frac{1 - Z}{1 + Z}$, $w = i W$.

Then, with the aid of the result in part (a), verify that it maps the disk $|z-1| \le 1$ onto the left half plane $\text{Re } w \le 0$.

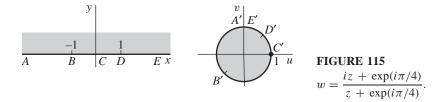
4. Transformation (6), Sec. 95, maps the point $z=\infty$ onto the point $w=\exp(i\alpha)$, which lies on the boundary of the disk $|w| \le 1$. Show that if $0 < \alpha < 2\pi$ and the points z=0 and z=1 are to be mapped onto the points w=1 and $w=\exp(i\alpha/2)$, respectively, the transformation can be written

$$w = e^{i\alpha} \left[\frac{z + \exp(-i\alpha/2)}{z + \exp(i\alpha/2)} \right].$$

5. Note that when $\alpha = \pi/2$, the transformation in Exercise 4 becomes

$$w = \frac{iz + \exp(i\pi/4)}{z + \exp(i\pi/4)}.$$

Verify that this special case maps points on the x axis as indicated in Fig. 115.



- **6.** Show that if $\text{Im } z_0 < 0$, transformation (6), Sec. 95, maps the lower half plane $\text{Im } z \le 0$ onto the unit disk $|w| \le 1$.
- 7. The equation $w = \log(z 1)$ can be written

$$Z = z - 1$$
, $w = \log Z$.

Find a branch of $\log Z$ such that the cut z plane consisting of all points except those on the segment $x \ge 1$ of the real axis is mapped by $w = \log(z - 1)$ onto the strip $0 < v < 2\pi$ in the w plane.

96. THE TRANSFORMATION $w = \sin z$

Since (Sec. 34)

$$\sin z = \sin x \cosh y + i \cos x \sinh y$$
,

the transformation $w = \sin z$ can be written

(1)
$$u = \sin x \cosh y, \quad v = \cos x \sinh y.$$

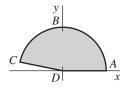
One method that is often useful in finding images of regions under this transformation is to examine images of vertical lines $x = c_1$. If $0 < c_1 < \pi/2$, points on the line $x = c_1$ are transformed into points on the curve

(2)
$$u = \sin c_1 \cosh y, \quad v = \cos c_1 \sinh y \quad (-\infty < y < \infty),$$

APPENDIX

2

TABLE OF TRANSFORMATIONS OF REGIONS (See Chap. 8)



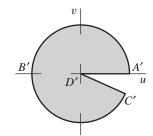
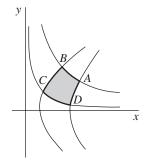


FIGURE 1 $w = z^2$.



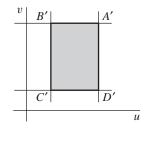
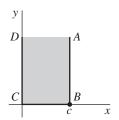
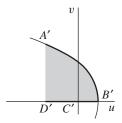


FIGURE 2 $w = z^2$.





 $w = z^2$; A'B' on parabola $v^2 = -4c^2(u - c^2)$.

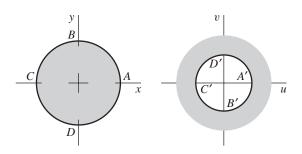
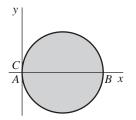


FIGURE 4

w = 1/z.



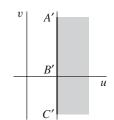
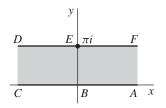
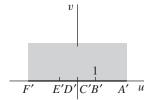


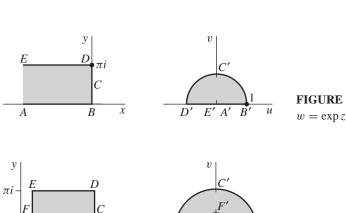
FIGURE 5

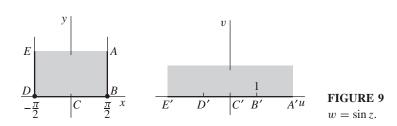
w = 1/z.

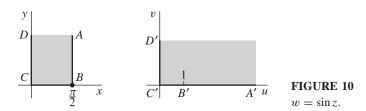


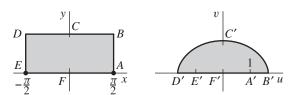


 $w = \exp z$.









 $w = \sin z$; BCD on line $y = b \ (b > 0)$,

$$B'C'D'$$
 on ellipse $\frac{u^2}{\cosh^2 b} + \frac{v^2}{\sinh^2 b} = 1$.

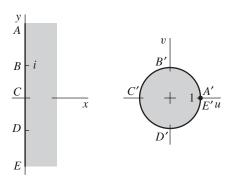
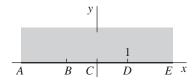


FIGURE 12 $w = \frac{z-1}{z+1}.$



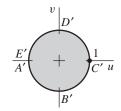
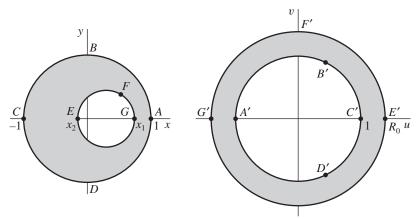
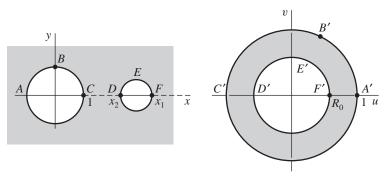


FIGURE 13 $w = \frac{i - z}{i + z}.$



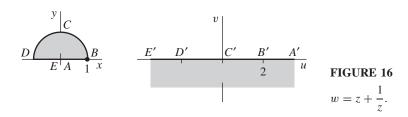
$$w = \frac{z - a}{az - 1}; a = \frac{1 + x_1 x_2 + \sqrt{(1 - x_1^2)(1 - x_2^2)}}{x_1 + x_2},$$

$$R_0 = \frac{1 - x_1 x_2 + \sqrt{(1 - x_1^2)(1 - x_2^2)}}{x_1 - x_2} \quad (a > 1 \text{ and } R_0 > 1 \text{ when } -1 < x_2 < x_1 < 1).$$



$$w = \frac{z - a}{az - 1}; \ a = \frac{1 + x_1 x_2 + \sqrt{(x_1^2 - 1)(x_2^2 - 1)}}{x_1 + x_2},$$

$$R_0 = \frac{x_1 x_2 - 1 - \sqrt{(x_1^2 - 1)(x_2^2 - 1)}}{x_1 - x_2} \ (x_2 < a < x_1 \text{ and } 0 < R_0 < 1 \text{ when } 1 < x_2 < x_1).$$



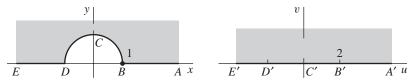
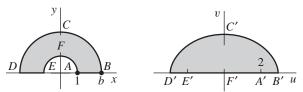
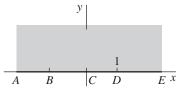


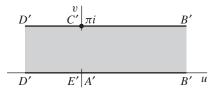
FIGURE 17

$$w = z + \frac{1}{z}.$$

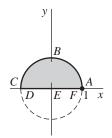


$$w = z + \frac{1}{z}$$
; $B'C'D'$ on ellipse $\frac{u^2}{(b+1/b)^2} + \frac{v^2}{(b-1/b)^2} = 1$.





$$w = \operatorname{Log} \frac{z-1}{z+1}; z = -\coth \frac{w}{2}.$$



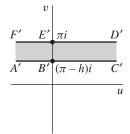
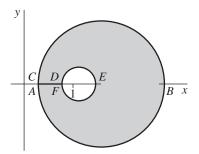


FIGURE 20

$$w = \text{Log } \frac{z-1}{z+1};$$

ABC on circle $x^2 + (y + \cot h)^2 = \csc^2 h$ (0 < h < \pi).



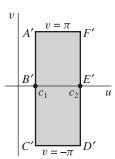
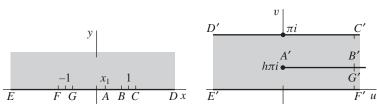
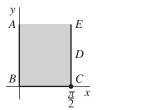


FIGURE 21

 $w = \text{Log } \frac{z+1}{z-1}$; centers of circles at $z = \coth c_n$, radii: $\operatorname{csch} c_n$ (n = 1, 2).



$$w = h \ln \frac{h}{1-h} + \ln 2(1-h) + i\pi - h \operatorname{Log}(z+1) - (1-h) \operatorname{Log}(z-1); \, x_1 = 2h-1 \, .$$



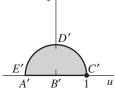
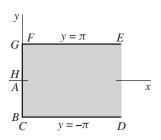


FIGURE 23 $w = \left(\tan\frac{z}{2}\right)^2 = \frac{1 - \cos z}{1 + \cos z}.$



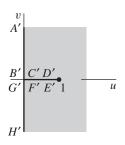
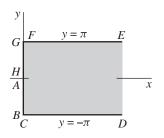


FIGURE 24
$$w = \coth \frac{z}{2} = \frac{e^z + 1}{e^z - 1}.$$



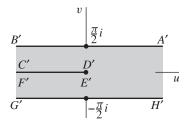
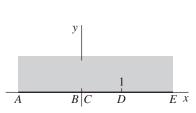


FIGURE 25
$$w = \operatorname{Log}\left(\coth\frac{z}{2}\right).$$



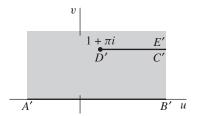
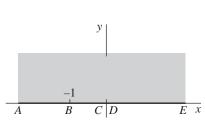


FIGURE 26 $w = \pi i + z - \text{Log } z.$



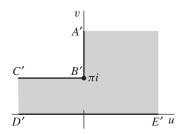
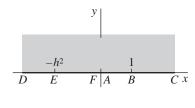
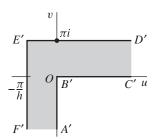
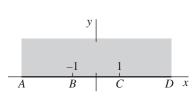


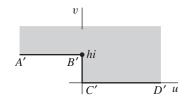
FIGURE 27
$$w = 2(z+1)^{1/2} + \text{Log } \frac{(z+1)^{1/2} - 1}{(z+1)^{1/2} + 1}.$$



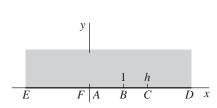


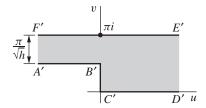
$$w = \frac{i}{h} \text{Log } \frac{1 + iht}{1 - iht} + \text{Log } \frac{1 + t}{1 - t}; \ t = \left(\frac{z - 1}{z + h^2}\right)^{1/2}.$$





$$w = \frac{h}{\pi} [(z^2 - 1)^{1/2} + \cosh^{-1} z].^*$$





$$w=\cosh^{-1}\biggl(\frac{2z-h-1}{h-1}\biggr)-\frac{1}{\sqrt{h}}\cosh^{-1}\biggl[\frac{(h+1)z-2h}{(h-1)z}\biggr].$$

^{*}See Exercise 3, Sec. 122.