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(b) Use the result in part (a), together with the mapping by sin z shown in Fig. 10,
Appendix 2, to verify that the transformation w = cosh z maps the semi-infinite
strip x ≥ 0, 0 ≤ y ≤ π/2 in the z plane onto the first quadrant u ≥ 0, v ≥ 0 of the
w plane. Indicate corresponding parts of the boundaries of the two regions.

7. Observe that the transformation w = cosh z can be expressed as a composition of the
mappings

Z = ez, W = Z + 1

Z
, w = 1

2
W.

Then, by referring to Figs. 7 and 16 in Appendix 2, show that when w = cosh z,
the semi-infinite strip x ≤ 0, 0 ≤ y ≤ π in the z plane is mapped onto the lower half
v ≤ 0 of the w plane. Indicate corresponding parts of the boundaries.

8. (a) Verify that the equation w = sin z can be written

Z = i
(
z + π

2

)
, W = cosh Z, w = −W.

(b) Use the result in part (a) here and the one in Exercise 7 to show that the transfor-
mation w = sin z maps the semi-infinite strip −π/2 ≤ x ≤ π/2, y ≥ 0 onto the
half plane v ≥ 0, as shown in Fig. 9, Appendix 2. (This mapping was verified in
a different way in Example 1, Sec. 96, and in Exercise 3.)

97. MAPPINGS BY z 2 AND BRANCHES OF z 1/2

In Chap 2 (Sec. 13), we considered some fairly simple mappings under the trans-
formation w = z2, written in the form

u = x2 − y2, v = 2xy.(1)

We turn now to a less elementary example and then examine related mappings
w = z1/2, where specific branches of the square root function are taken.

EXAMPLE 1. Let us use equations (1) to show that the image of the ver-
tical strip 0 ≤ x ≤ 1, y ≥ 0, shown in Fig. 122, is the closed semiparabolic region
indicated there.
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w = z2.
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When 0 < x1 < 1, the point (x1, y) moves up a vertical half line, labeled L1

in Fig. 122, as y increases from y = 0. The image traced out in the uv plane has,
according to equations (1), the parametric representation

u = x2
1 − y2, v = 2x1y (0 ≤ y < ∞).(2)

Using the second of these equations to substitute for y in the first one, we see that
the image points (u, v) must lie on the parabola

v2 = −4x2
1(u − x2

1),(3)

with vertex at (x2
1 , 0) and focus at the origin. Since v increases with y from v = 0,

according to the second of equations (2), we also see that as the point (x1, y) moves
up L1 from the x axis, its image moves up the top half L′

1 of the parabola from the
u axis. Furthermore, when a number x2 larger than x1 but less than 1 is taken, the
corresponding half line L2 has an image L′

2 that is a half parabola to the right of
L′

1, as indicated in Fig. 122. We note, in fact, that the image of the half line BA in
that figure is the top half of the parabola v2 = −4(u − 1), labeled B ′A′.

The image of the half line CD is found by observing from equations (1) that a
typical point (0, y), where y ≥ 0, on CD is transformed into the point (−y2, 0) in
the uv plane. So, as a point moves up from the origin along CD, its image moves
left from the origin along the u axis. Evidently, then, as the vertical half lines in the
xy plane move to the left, the half parabolas that are their images in the uv plane
shrink down to become the half line C′D′.

It is now clear that the images of all the half lines between and including CD

and BA fill up the closed semiparabolic region bounded by A′B ′C′D′. Also, each
point in that region is the image of only one point in the closed strip bounded by
ABCD. Hence we may conclude that the semiparabolic region is the image of the
strip and that there is a one to one correspondence between points in those closed
regions. (Compare with Fig. 3 in Appendix 2, where the strip has arbitrary width.)

As for mappings by branches of z1/2, we recall from Sec. 9 that the values of
z1/2 are the two square roots of z when z �= 0. According to that section, if polar
coordinates are used and

z = r exp(i�) (r > 0, −π < � ≤ π),

then

z1/2 = √
r exp

i(� + 2kπ)

2
(k = 0, 1),(4)

the principal root occurring when k = 0. In Sec. 32, we saw that z1/2 can also be
written

z1/2 = exp

(
1

2
log z

)
(z �= 0).(5)
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The principal branch F0(z) of the double-valued function z1/2 is then obtained by
taking the principal branch of log z and writing (see Sec. 33)

F0(z) = exp

(
1

2
Log z

)
(|z| > 0, −π < Arg z < π).

Since
1

2
Log z = 1

2
(ln r + i�) = ln

√
r + i�

2

when z = r exp(i�), this becomes

F0(z) = √
r exp

i�

2
(r > 0, −π < � < π).(6)

The right-hand side of this equation is, of course, the same as the right-hand side
of equation (4) when k = 0 and −π < � < π there. The origin and the ray � = π

form the branch cut for F0, and the origin is the branch point.
Images of curves and regions under the transformation w = F0(z) may be

obtained by writing w = ρ exp(iφ), where ρ = √
r and φ = �/2. Arguments are

evidently halved by this transformation, and it is understood that w = 0 when z = 0.

EXAMPLE 2. It is easy to verify that w = F0(z) is a one to one mapping of
the quarter disk 0 ≤ r ≤ 2, 0 ≤ θ ≤ π/2 onto the sector 0 ≤ ρ ≤ √

2, 0 ≤ φ ≤ π/4
in the w plane (Fig. 123). To do this, we observe that as a point z = r exp(iθ1)

moves outward from the origin along a radius R1 of length 2 and with angle of
inclination θ1 (0 ≤ θ1 ≤ π/2), its image w = √

r exp(iθ1/2) moves outward from
the origin in the w plane along a radius R′

1 whose length is
√

2 and angle of
inclination is θ1/2. See Fig. 123, where another radius R2 and its image R′

2 are also
shown. It is now clear from the figure that if the region in the z plane is thought
of as being swept out by a radius, starting with DA and ending with DC, then the
region in the w plane is swept out by the corresponding radius, starting with D′A′
and ending with D′C′. This establishes a one to one correspondence between points
in the two regions.
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EXAMPLE 3. The transformation w = F0(sin z) can be written

Z = sin z, w = F0(Z) (|Z| > 0, −π < Arg Z < π).

From a remark at the end of Example 1 in Sec. 96, we know that the first trans-
formation maps the semi-infinite strip 0 ≤ x ≤ π/2, y ≥ 0 onto the first quadrant
of the Z plane. The second transformation, with the understanding that F0(0) = 0,
maps that quadrant onto an octant in the w plane. These successive transformations
are illustrated in Fig. 124, where corresponding boundary points are shown.
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w = F0(sin z).

When −π < � < π and the branch

log z = ln r + i(� + 2π)

of the logarithmic function is used, equation (5) yields the branch

F1(z) = √
r exp

i(� + 2π)

2
(r > 0,−π < � < π)(7)

of z1/2, which corresponds to k = 1 in equation (4). Since exp(iπ) = −1, it follows
that F1(z) = −F0(z). The values ±F0(z) thus represent the totality of values of z1/2

at all points in the domain r > 0,−π < � < π . If, by means of expression (6), we
extend the domain of definition of F0 to include the ray � = π and if we write
F0(0) = 0, then the values ±F0(z) represent the totality of values of z1/2 in the
entire z plane.

Other branches of z1/2 are obtained by using other branches of log z in expres-
sion (5). A branch where the ray θ = α is used to form the branch cut is given by
the equation

fα(z) = √
r exp

iθ

2
(r > 0, α < θ < α + 2π).(8)

Observe that when α = −π , we have the branch F0(z) and that when α = π , we
have the branch F1(z). Just as in the case of F0 , the domain of definition of fα can
be extended to the entire complex plane by using expression (8) to define fα at the
nonzero points on the branch cut and by writing fα(0) = 0. Such extensions are,
however, never continuous on the entire complex plane.
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Finally, suppose that n is any positive integer, where n ≥ 2. The values of z1/n

are the nth roots of z when z �= 0 ; and, according to Sec. 32, the multiple-valued
function z1/n can be written

z1/n = exp

(
1

n
log z

)
= n

√
r exp

i(� + 2kπ)

n
(k = 0, 1, 2, . . . , n − 1),(9)

where r = |z| and � = Arg z. The case n = 2 has just been considered. In the
general case, each of the n functions

Fk(z) = n
√

r exp
i(� + 2kπ)

n
(k = 0, 1, 2, . . . , n − 1)(10)

is a branch of z1/n, defined on the domain r > 0, −π < � < π . When w = ρeiφ ,
the transformation w = Fk(z) is a one to one mapping of that domain onto the
domain

ρ > 0,
(2k − 1)π

n
< φ <

(2k + 1)π

n
.

These n branches of z1/n yield the n distinct nth roots of z at any point z in the
domain r > 0, −π < � < π . The principal branch occurs when k = 0, and further
branches of the type (8) are readily constructed.

EXERCISES
1. Show, indicating corresponding orientations, that the mapping w = z2 transforms hor-

izontal lines y = y1 (y1 > 0) into parabolas v2 = 4y2
1 (u + y2

1 ), all with foci at the
origin w = 0. (Compare with Example 1, Sec. 97.)

2. Use the result in Exercise 1 to show that the transformation w = z2 is a one to one
mapping of a horizontal strip a ≤ y ≤ b above the x axis onto the closed region
between the two parabolas

v2 = 4a2(u + a2), v2 = 4b2(u + b2).

3. Point out how it follows from the discussion in Example 1, Sec. 97, that the transfor-
mation w = z2 maps a vertical strip 0 ≤ x ≤ c, y ≥ 0 of arbitrary width onto a closed
semiparabolic region, as shown in Fig. 3, Appendix 2.

4. Modify the discussion in Example 1, Sec. 97, to show that when w = z2, the image
of the closed triangular region formed by the lines y = ±x and x = 1 is the closed
parabolic region bounded on the left by the segment −2 ≤ v ≤ 2 of the v axis and
on the right by a portion of the parabola v2 = −4(u − 1). Verify the corresponding
points on the two boundaries shown in Fig. 125.

5. By referring to Fig. 10, Appendix 2, show that the transformation w = sin2 z maps
the strip 0 ≤ x ≤ π/2, y ≥ 0 onto the half plane v ≥ 0. Indicate corresponding parts
of the boundaries.

Suggestion: See also the first paragraph in Example 3, Sec. 13.
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FIGURE 125
w = z2.

6. Use Fig. 9, Appendix 2, to show that if w = (sin z)1/4 and the principal branch of
the fractional power is taken, then the semi-infinite strip −π/2 < x < π/2, y > 0 is
mapped onto the part of the first quadrant lying between the line v = u and the u axis.
Label corresponding parts of the boundaries.

7. According to Example 2, Sec. 95, the linear fractional transformation

Z = z − 1

z + 1

maps the x axis onto the X axis and the half planes y > 0 and y < 0 onto the half
planes Y > 0 and Y < 0, respectively. Show that, in particular, it maps the segment
−1 ≤ x ≤ 1 of the x axis onto the segment X ≤ 0 of the X axis. Then show that
when the principal branch of the square root is used, the composite function

w = Z1/2 =
(

z − 1

z + 1

)1/2

maps the z plane, except for the segment −1 ≤ x ≤ 1 of the x axis, onto the right
half plane u > 0.

8. Determine the image of the domain r > 0,−π < � < π in the z plane under each of
the transformations w = Fk(z) (k = 0, 1, 2, 3), where Fk(z) are the four branches of
z1/4 given by equation (10), Sec. 97, when n = 4. Use these branches to determine
the fourth roots of i.

98. SQUARE ROOTS OF POLYNOMIALS

We now consider some mappings that are compositions of polynomials and square
roots.

EXAMPLE 1. Branches of the double-valued function (z − z0)
1/2 can be

obtained by noting that it is a composition of the translation Z = z − z0 with the




