Let two sheets be cut along the line segment L_2 from $z = -1$ to $z = 0$ and along the part L_1 of the real axis to the right of the point $z = 1$. We specify that each of the three angles θ , θ_1 , and θ_2 may range from 0 to 2π on the sheet R_0 and from 2π to 4π on the sheet R_1 . We also specify that the angles corresponding to a point on either sheet may be changed by integral multiples of 2π in such a way that the sum of the three angles changes by an integral multiple of 4π . The value of the function *f* is, therefore, unaltered.

A Riemann surface for the double-valued function (2) is obtained by joining the lower edges in R_0 of the slits along L_1 and L_2 to the upper edges in R_1 of the slits along L_1 and L_2 , respectively. The lower edges in R_1 of the slits along L_1 and L_2 are then joined to the upper edges in R_0 of the slits along L_1 and L_2 , respectively. It is readily verified with the aid of Fig. 133 that one branch of the function is represented by its values at points on R_0 and the other branch at points on R_1 .

EXERCISES

- **1.** Describe a Riemann surface for the triple-valued function $w = (z 1)^{1/3}$, and point out which third of the *w* plane represents the image of each sheet of that surface.
- **2.** Corresponding to each point on the Riemann surface described in Example 2, Sec. 100, for the function $w = f(z)$ in that example, there is just one value of w. Show that corresponding to each value of *w*, there are, in general, three points on the surface.
- **3.** Describe a Riemann surface for the multiple-valued function

$$
f(z) = \left(\frac{z-1}{z}\right)^{1/2}.
$$

4. Note that the Riemann surface described in Example 1, Sec. 100, for $(z^2 - 1)^{1/2}$ is also a Riemann surface for the function

$$
g(z) = z + (z^2 - 1)^{1/2}.
$$

Let f_0 denote the branch of $(z^2 - 1)^{1/2}$ defined on the sheet R_0 , and show that the branches g_0 and g_1 of g on the two sheets are given by the equations

$$
g_0(z) = \frac{1}{g_1(z)} = z + f_0(z).
$$

5. In Exercise 4, the branch f_0 of $(z^2 - 1)^{1/2}$ can be described by means of the equation

$$
f_0(z) = \sqrt{r_1 r_2} \left(\exp \frac{i\theta_1}{2} \right) \left(\exp \frac{i\theta_2}{2} \right),
$$

where θ_1 and θ_2 range from 0 to 2π and

$$
z - 1 = r_1 \exp(i\theta_1), \quad z + 1 = r_2 \exp(i\theta_2).
$$

354 MAPPING BY ELEMENTARY FUNCTIONS CHAP. 8

Note that

$$
2z = r_1 \exp(i\theta_1) + r_2 \exp(i\theta_2),
$$

and show that the branch g_0 of the function $g(z) = z + (z^2 - 1)^{1/2}$ can be written in the form

$$
g_0(z) = \frac{1}{2} \left(\sqrt{r_1} \exp \frac{i\theta_1}{2} + \sqrt{r_2} \exp \frac{i\theta_2}{2} \right)^2.
$$

Find $g_0(z)\overline{g_0(z)}$ and note that $r_1 + r_2 \ge 2$ and $\cos[(\theta_1 - \theta_2)/2] \ge 0$ for all *z*, to prove that $|g_0(z)| \ge 1$. Then show that the transformation $w = z + (z^2 - 1)^{1/2}$ maps the sheet R_0 of the Riemann surface onto the region $|w| \geq 1$, the sheet R_1 onto the region $|w| \le 1$, and the branch cut between the points $z = \pm 1$ onto the circle $|w| = 1$. Note that the transformation used here is an inverse of the transformation

$$
z = \frac{1}{2} \bigg(w + \frac{1}{w} \bigg).
$$