EXAMPLE 3. When $w = e^z$, the image of the infinite strip $0 \le y \le \pi$ is the upper half $v > 0$ of the *w* plane (Fig. 22). This is seen by recalling from Example 1 how a horizontal line $y = c$ is transformed into a ray $\phi = c$ from the origin. As the real number *c* increases from $c = 0$ to $c = \pi$, the *y* intercepts of the lines increase from 0 to π and the angles of inclination of the rays increase from $\phi = 0$ to $\phi = \pi$. This mapping is also shown in Fig. 6 of Appendix 2, where corresponding points on the boundaries of the two regions are indicated.

 $w = \exp z$.

EXERCISES

- **1.** By referring to Example 1 in Sec. 13, find a domain in the *z* plane whose image under the transformation $w = z^2$ is the square domain in the *w* plane bounded by the lines $u = 1, u = 2, v = 1$, and $v = 2$. (See Fig. 2, Appendix 2.)
- **2.** Find and sketch, showing corresponding orientations, the images of the hyperbolas

$$
x^2 - y^2 = c_1 \ (c_1 < 0) \quad \text{and} \quad 2xy = c_2 \ (c_2 < 0)
$$

under the transformation $w = z^2$.

- **3.** Sketch the region onto which the sector $r \leq 1$, $0 \leq \theta \leq \pi/4$ is mapped by the transformation *(a)* $w = z^2$; *(b)* $w = z^3$; *(c)* $w = z^4$.
- **4.** Show that the lines $ay = x$ ($a \neq 0$) are mapped onto the spirals $\rho = \exp(a\phi)$ under the transformation $w = \exp z$, where $w = \rho \exp(i\phi)$.
- **5.** By considering the images of *horizontal* line segments, verify that the image of the rectangular region $a \le x \le b$, $c \le y \le d$ under the transformation $w = \exp z$ is the region $e^a \le \rho \le e^b$, $c \le \phi \le d$, as shown in Fig. 21 (Sec. 14).
- **6.** Verify the mapping of the region and boundary shown in Fig. 7 of Appendix 2, where the transformation is $w = \exp z$.
- **7.** Find the image of the semi-infinite strip $x \geq 0, 0 \leq y \leq \pi$ under the transformation $w = \exp z$, and label corresponding portions of the boundaries.

8. One interpretation of a function $w = f(z) = u(x, y) + iv(x, y)$ is that of a *vector field* in the domain of definition of f . The function assigns a vector w , with components $u(x, y)$ and $v(x, y)$, to each point *z* at which it is defined. Indicate graphically the vector fields represented by *(a)* $w = iz$; *(b)* $w = z/|z|$.

15. LIMITS

Let a function f be defined at all points ζ in some deleted neighborhood (Sec. 11) of z_0 . The statement that the *limit* of $f(z)$ as z approaches z_0 is a number w_0 , or that

$$
\lim_{z \to z_0} f(z) = w_0,
$$

means that the point $w = f(z)$ can be made arbitrarily close to w_0 if we choose the point *z* close enough to z_0 but distinct from it. We now express the definition of limit in a precise and usable form.

Statement (1) means that for each positive number ε , there is a positive number *δ* such that

$$
(2) \t\t |f(z) - w_0| < \varepsilon \quad \text{whenever} \quad 0 < |z - z_0| < \delta.
$$

Geometrically, this definition says that for each ε neighborhood $|w - w_0| < \varepsilon$ of *w*₀, there is a deleted δ neighborhood $0 < |z - z_0| < \delta$ of z_0 such that every point *z* in it has an image *w* lying in the *ε* neighborhood (Fig. 23). Note that even though all points in the deleted neighborhood $0 < |z - z_0| < \delta$ are to be considered, their images need not fill up the entire neighborhood $|w - w_0| < \varepsilon$. If *f* has the constant value w_0 , for instance, the image of *z* is always the center of that neighborhood. Note, too, that once a δ has been found, it can be replaced by any smaller positive number, such as *δ/*2.

It is easy to show that *when a limit of a function* $f(z)$ *exists at a point* z_0 *, it is unique.* To do this, we suppose that

$$
\lim_{z \to z_0} f(z) = w_0 \text{ and } \lim_{z \to z_0} f(z) = w_1.
$$

Then, for each positive number ε , there are positive numbers δ_0 and δ_1 such that

$$
|f(z) - w_0| < \varepsilon \quad \text{whenever} \quad 0 < |z - z_0| < \delta_0
$$