To prove this, we assume that the function *f* in equation (5) is continuous and note how it follows that the function

$$
\sqrt{[u(x, y)]^2 + [v(x, y)]^2}
$$

is continuous throughout *R* and thus reaches a maximum value *M* somewhere in *R*. [∗] Inequality (6) thus holds, and we say that *f is bounded on R*.

EXERCISES

1. Use definition (2), Sec. 15, of limit to prove that

(a)
$$
\lim_{z \to z_0} \text{Re } z = \text{Re } z_0;
$$

 (b) $\lim_{z \to z_0} \overline{z} = \overline{z_0};$
 (c) $\lim_{z \to 0} \frac{\overline{z}^2}{z} = 0.$

- **2.** Let *a*, *b*, and *c* denote complex constants. Then use definition (2), Sec. 15, of limit to show that
	- (a) $\lim_{z \to z_0} (az + b) = az_0 + b;$ (b) $\lim_{z \to z_0} (z^2 + c) = z_0^2 + c;$ *(c)* lim [*x* + *i(*2*x* + *y)*] = 1 + *i (z* = *x* + *iy)*. *z*→1−*i*
- **3.** Let *n* be a positive integer and let $P(z)$ and $Q(z)$ be polynomials, where $Q(z_0) \neq 0$. Use Theorem 2 in Sec. 16, as well as limits appearing in that section, to find

(a)
$$
\lim_{z \to z_0} \frac{1}{z^n} (z_0 \neq 0);
$$
 (b) $\lim_{z \to i} \frac{iz^3 - 1}{z + i};$ (c) $\lim_{z \to z_0} \frac{P(z)}{Q(z)}.$
Ans. (a) $1/z_0^n;$ (b) 0; (c) $P(z_0)/Q(z_0).$

4. Use mathematical induction and property (9), Sec. 16, of limits to show that

$$
\lim_{z \to z_0} z^n = z_0^n
$$

when *n* is a positive integer $(n = 1, 2, \ldots)$.

5. Show that the limit of the function

$$
f(z) = \left(\frac{z}{\overline{z}}\right)^2
$$

as *z* tends to 0 does not exist. Do this by letting nonzero points $z = (x, 0)$ and $z = (x, x)$ approach the origin. [Note that it is not sufficient to simply consider points $z = (x, 0)$ and $z = (0, y)$, as it was in Example 2, Sec. 15.]

- **6.** Prove statement (8) in Theorem 2 of Sec. 16 using
	- *(a)* Theorem 1 in Sec. 16 and properties of limits of real-valued functions of two real variables;
	- *(b)* definition (2), Sec. 15, of limit.

[∗]See, for instance, A. E. Taylor and W. R. Mann, "Advanced Calculus," 3d ed., pp. 125–126 and p. 529, 1983.

7. Use definition (2), Sec. 15, of limit to prove that

if
$$
\lim_{z \to z_0} f(z) = w_0
$$
, then $\lim_{z \to z_0} |f(z)| = |w_0|$.

Suggestion: Observe how the first of inequalities (9), Sec. 4, enables one to write

$$
||f(z)| - |w_0|| \le |f(z) - w_0|.
$$

8. Write $\Delta z = z - z_0$ and show that

$$
\lim_{z \to z_0} f(z) = w_0 \quad \text{if and only if} \quad \lim_{\Delta z \to 0} f(z_0 + \Delta z) = w_0.
$$

9. Show that

$$
\lim_{z \to z_0} f(z)g(z) = 0 \quad \text{if} \quad \lim_{z \to z_0} f(z) = 0
$$

and if there exists a positive number *M* such that $|g(z)| \leq M$ for all *z* in some neighborhood of *z*0.

10. Use the theorem in Sec. 17 to show that

(a)
$$
\lim_{z \to \infty} \frac{4z^2}{(z-1)^2} = 4;
$$
 (b) $\lim_{z \to 1} \frac{1}{(z-1)^3} = \infty;$ (c) $\lim_{z \to \infty} \frac{z^2 + 1}{z - 1} = \infty.$

11. With the aid of the theorem in Sec. 17, show that when

$$
T(z) = \frac{az+b}{cz+d} \qquad (ad - bc \neq 0),
$$

(a)
$$
\lim_{z \to \infty} T(z) = \infty
$$
 if $c = 0$;

(b)
$$
\lim_{z \to \infty} T(z) = \frac{a}{c}
$$
 and $\lim_{z \to -d/c} T(z) = \infty$ if $c \neq 0$.

- **12.** State why limits involving the point at infinity are unique.
- **13.** Show that a set *S* is unbounded (Sec. 11) if and only if every neighborhood of the point at infinity contains at least one point in *S*.

19. DERIVATIVES

Let *f* be a function whose domain of definition contains a neighborhood $|z - z_0| < \varepsilon$ of a point z_0 . The *derivative* of f at z_0 is the limit

(1)
$$
f'(z_0) = \lim_{z \to z_0} \frac{f(z) - f(z_0)}{z - z_0},
$$

and the function *f* is said to be *differentiable* at z_0 when $f'(z_0)$ exists.

By expressing the variable z in definition (1) in terms of the new complex variable

$$
\Delta z = z - z_0 \quad (z \neq z_0),
$$