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To prove this, we assume that the function f in equation (5) is continuous and
note how it follows that the function√

[u(x, y)]2 + [v(x, y)]2

is continuous throughout R and thus reaches a maximum value M somewhere in
R.∗ Inequality (6) thus holds, and we say that f is bounded on R.

EXERCISES
1. Use definition (2), Sec. 15, of limit to prove that

(a) lim
z→z0

Re z = Re z0 ; (b) lim
z→z0

z = z0 ; (c) lim
z→0

z2

z
= 0.

2. Let a, b, and c denote complex constants. Then use definition (2), Sec. 15, of limit to
show that
(a) lim

z→z0
(az + b) = az0 + b; (b) lim

z→z0
(z2 + c) = z2

0 + c;

(c) lim
z→1−i

[x + i(2x + y)] = 1 + i (z = x + iy).

3. Let n be a positive integer and let P (z) and Q(z) be polynomials, where Q(z0) �= 0.
Use Theorem 2 in Sec. 16, as well as limits appearing in that section, to find

(a) lim
z→z0

1

zn
(z0 �= 0); (b) lim

z→i

iz3 − 1

z + i
; (c) lim

z→z0

P (z)

Q(z)
.

Ans. (a) 1/zn
0; (b) 0; (c) P (z0)/Q(z0).

4. Use mathematical induction and property (9), Sec. 16, of limits to show that

lim
z→z0

zn = zn
0

when n is a positive integer (n = 1, 2, . . .).

5. Show that the limit of the function

f (z) =
(

z

z

)2

as z tends to 0 does not exist. Do this by letting nonzero points z = (x, 0) and
z = (x, x) approach the origin. [Note that it is not sufficient to simply consider points
z = (x, 0) and z = (0, y), as it was in Example 2, Sec. 15.]

6. Prove statement (8) in Theorem 2 of Sec. 16 using

(a) Theorem 1 in Sec. 16 and properties of limits of real-valued functions of two real
variables;

(b) definition (2), Sec. 15, of limit.

∗See, for instance, A. E. Taylor and W. R. Mann, “Advanced Calculus,” 3d ed., pp. 125–126 and
p. 529, 1983.
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7. Use definition (2), Sec. 15, of limit to prove that

if lim
z→z0

f (z) = w0, then lim
z→z0

|f (z)| = |w0|.

Suggestion: Observe how the first of inequalities (9), Sec. 4, enables one to write

||f (z)| − |w0|| ≤ |f (z) − w0|.
8. Write 	z = z − z0 and show that

lim
z→z0

f (z) = w0 if and only if lim
	z→0

f (z0 + 	z) = w0.

9. Show that
lim
z→z0

f (z)g(z) = 0 if lim
z→z0

f (z) = 0

and if there exists a positive number M such that |g(z)| ≤ M for all z in some
neighborhood of z0.

10. Use the theorem in Sec. 17 to show that

(a) lim
z→∞

4z2

(z − 1)2
= 4; (b) lim

z→1

1

(z − 1)3
= ∞; (c) lim

z→∞
z2 + 1

z − 1
= ∞.

11. With the aid of the theorem in Sec. 17, show that when

T (z) = az + b

cz + d
(ad − bc �= 0),

(a) lim
z→∞ T (z) = ∞ if c = 0;

(b) lim
z→∞ T (z) = a

c
and lim

z→−d/c
T (z) = ∞ if c �= 0.

12. State why limits involving the point at infinity are unique.

13. Show that a set S is unbounded (Sec. 11) if and only if every neighborhood of the
point at infinity contains at least one point in S.

19. DERIVATIVES

Let f be a function whose domain of definition contains a neighborhood |z − z0| < ε

of a point z0. The derivative of f at z0 is the limit

f ′(z0) = lim
z→z0

f (z) − f (z0)

z − z0
,(1)

and the function f is said to be differentiable at z0 when f ′(z0) exists.
By expressing the variable z in definition (1) in terms of the new complex

variable

	z = z − z0 (z �= z0),




