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where we must stipulate that z �= z0 so that we are not dividing by zero. As already
noted, f is continuous at z0 and 
 is continuous at the point w0 = f (z0). Hence
the composition 
[f (z)] is continuous at z0; and since 
(w0) = 0,

lim
z→z0


[f (z)] = 0.

So equation (10) becomes equation (6) in the limit as z approaches z0.

EXERCISES
1. Use results in Sec. 20 to find f ′(z) when

(a) f (z) = 3z2 − 2z + 4; (b) f (z) = (1 − 4z2)3 ;

(c) f (z) = z − 1

2z + 1
(z �= −1/2); (d) f (z) = (1 + z2)4

z2
(z �= 0).

2. Using results in Sec. 20, show that

(a) a polynomial

P (z) = a0 + a1z + a2z
2 + · · · + anz

n (an �= 0)

of degree n (n ≥ 1) is differentiable everywhere, with derivative

P ′(z) = a1 + 2a2z + · · · + nanz
n−1 ;

(b) the coefficients in the polynomial P (z) in part (a) can be written

a0 = P (0), a1 = P ′(0)

1!
, a2 = P ′′(0)

2!
, . . . , an = P (n)(0)

n!
.

3. Apply definition (3), Sec. 19, of derivative to give a direct proof that

dw

dz
= − 1

z2
when w = 1

z
(z �= 0).

4. Suppose that f (z0) = g(z0) = 0 and that f ′(z0) and g′(z0) exist, where g′(z0) �= 0.
Use definition (1), Sec. 19, of derivative to show that

lim
z→z0

f (z)

g(z)
= f ′(z0)

g′(z0)
.

5. Derive formula (3), Sec. 20, for the derivative of the sum of two functions.

6. Derive expression (2), Sec. 20, for the derivative of zn when n is a positive integer
by using

(a) mathematical induction and formula (4), Sec. 20, for the derivative of the product
of two functions;

(b) definition (3), Sec. 19, of derivative and the binomial formula (Sec. 3).
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7. Prove that expression (2), Sec. 20, for the derivative of zn remains valid when n is a
negative integer (n = −1,−2, . . .), provided that z �= 0.

Suggestion: Write m = −n and use the formula for the derivative of a quotient
of two functions.

8. Use the method in Example 2, Sec. 19, to show that f ′(z) does not exist at any point
z when
(a) f (z) = Re z; (b) f (z) = Im z.

9. Let f denote the function whose values are

f (z) =
{

z2/z when z �= 0,

0 when z = 0.

Show that if z = 0, then 	w/	z = 1 at each nonzero point on the real and imaginary
axes in the 	z, or 	x 	y, plane. Then show that 	w/	z = −1 at each nonzero point
(	x,	x) on the line 	y = 	x in that plane. Conclude from these observations that
f ′(0) does not exist. Note that to obtain this result, it is not sufficient to consider
only horizontal and vertical approaches to the origin in the 	z plane. (Compare with
Example 2, Sec. 19.)

21. CAUCHY–RIEMANN EQUATIONS

In this section, we obtain a pair of equations that the first-order partial derivatives
of the component functions u and v of a function

f (z) = u(x, y) + iv(x, y)(1)

must satisfy at a point z0 = (x0, y0) when the derivative of f exists there. We also
show how to express f ′(z0) in terms of those partial derivatives.

We start by writing

z0 = x0 + iy0, 	z = 	x + i	y,

and

	w = f (z0 + 	z) − f (z0)

= [u(x0 + 	x, y0 + 	y) − u(x0, y0)] + i[v(x0 + 	x, y0 + 	y) − v(x0, y0)].

Assuming that the derivative

f ′(z0) = lim
	z→0

	w

	z
(2)

exists, we know from Theorem 1 in Sec. 16 that

f ′(z0) = lim
(	x,	y)→(0,0)

(
Re

	w

	z

)
+ i lim

(	x,	y)→(0,0)

(
Im

	w

	z

)
.(3)




