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and since the other conditions in the theorem are satisfied, the derivative f ′(z) exists
at each point where f (z) is defined. The theorem tells us, moreover, that

f ′(z) = e−iθ
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or
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Note that when a specific point z is taken in the domain of definition of f, the
value f (z) is one value of z1/3 (see Sec. 9). Hence this last expression for f ′(z) can
be put in the form

d

dz
z1/3 = 1
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when that value is taken. Derivatives of such power functions will be elaborated on
in Chap. 3 (Sec. 33).

EXERCISES
1. Use the theorem in Sec. 21 to show that f ′(z) does not exist at any point if

(a) f (z) = z ; (b) f (z) = z − z ;
(c) f (z) = 2x + ixy2 ; (d) f (z) = exe−iy .

2. Use the theorem in Sec. 22 to show that f ′(z) and its derivative f ′′(z) exist every-
where, and find f ′′(z) when

(a) f (z) = iz + 2; (b) f (z) = e−xe−iy ;
(c) f (z) = z3; (d) f (z) = cos x cosh y − i sin x sinh y.

Ans. (b) f ′′(z) = f (z); (d) f ′′(z) = −f (z).

3. From results obtained in Secs. 21 and 22, determine where f ′(z) exists and find its
value when

(a) f (z) = 1/z; (b) f (z) = x2 + iy2; (c) f (z) = z Im z.

Ans. (a) f ′(z) = −1/z2 (z �= 0); (b) f ′(x + ix) = 2x; (c) f ′(0) = 0.

4. Use the theorem in Sec. 23 to show that each of these functions is differentiable in
the indicated domain of definition, and also to find f ′(z):

(a) f (z) = 1/z4 (z �= 0);

(b) f (z) = √
reiθ/2 (r > 0, α < θ < α + 2π);

(c) f (z) = e−θ cos(ln r) + ie−θ sin(ln r) (r > 0, 0 < θ < 2π).

Ans. (b) f ′(z) = 1

2f (z)
; (c) f ′(z) = i

f (z)

z
.
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5. Show that when f (z) = x3 + i(1 − y)3, it is legitimate to write

f ′(z) = ux + ivx = 3x2

only when z = i.

6. Let u and v denote the real and imaginary components of the function f defined by
means of the equations

f (z) =
{
z2/z when z �= 0,

0 when z = 0.

Verify that the Cauchy–Riemann equations ux = vy and uy = −vx are satisfied at the
origin z = (0, 0). [Compare with Exercise 9, Sec. 20, where it is shown that f ′(0)

nevertheless fails to exist.]

7. Solve equations (2), Sec. 23 for ux and uy to show that

ux = ur cos θ − uθ

sin θ

r
, uy = ur sin θ + uθ

cos θ

r
.

Then use these equations and similar ones for vx and vy to show that in Sec. 23
equations (4) are satisfied at a point z0 if equations (6) are satisfied there. Thus com-
plete the verification that equations (6), Sec. 23, are the Cauchy–Riemann equations
in polar form.

8. Let a function f (z) = u + iv be differentiable at a nonzero point z0 = r0 exp(iθ0).
Use the expressions for ux and vx found in Exercise 7, together with the polar form
(6), Sec. 23, of the Cauchy–Riemann equations, to rewrite the expression

f ′(z0) = ux + ivx

in Sec. 22 as
f ′(z0) = e−iθ (ur + ivr ),

where ur and vr are to be evaluated at (r0, θ0).

9. (a) With the aid of the polar form (6), Sec. 23, of the Cauchy–Riemann equations,
derive the alternative form

f ′(z0) = −i

z0
(uθ + ivθ )

of the expression for f ′(z0) found in Exercise 8.
(b) Use the expression for f ′(z0) in part (a) to show that the derivative of the function

f (z) = 1/z (z �= 0) in Example 1, Sec. 23, is f ′(z) = −1/z2.

10. (a) Recall (Sec. 5) that if z = x + iy, then

x = z + z

2
and y = z − z

2i
.
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By formally applying the chain rule in calculus to a function F(x, y) of two real
variables, derive the expression
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(b) Define the operator
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suggested by part (a), to show that if the first-order partial derivatives of the
real and imaginary components of a function f (z) = u(x, y) + iv(x, y) satisfy
the Cauchy–Riemann equations, then

∂f

∂z
= 1

2
[(ux − vy) + i(vx + uy)] = 0.

Thus derive the complex form ∂f/∂z = 0 of the Cauchy–Riemann equations.

24. ANALYTIC FUNCTIONS

We are now ready to introduce the concept of an analytic function. A function f of
the complex variable z is analytic at a point z0 if it has a derivative at each point
in some neighborhood of z0.

∗ It follows that if f is analytic at a point z0, it must
be analytic at each point in some neighborhood of z0. A function f is analytic in
an open set if it has a derivative everywhere in that set. If we should speak of a
function f that is analytic in a set S which is not open, it is to be understood that
f is analytic in an open set containing S.

Note that the function f (z) = 1/z is analytic at each nonzero point in the finite
plane. But the function f (z) = |z|2 is not analytic at any point since its derivative
exists only at z = 0 and not throughout any neighborhood. (See Example 3, Sec. 19.)

An entire function is a function that is analytic at each point in the entire finite
plane. Since the derivative of a polynomial exists everywhere, it follows that every
polynomial is an entire function.

If a function f fails to be analytic at a point z0 but is analytic at some point
in every neighborhood of z0, then z0 is called a singular point, or singularity, of
f . The point z = 0 is evidently a singular point of the function f (z) = 1/z. The
function f (z) = |z|2, on the other hand, has no singular points since it is nowhere
analytic.

A necessary, but by no means sufficient, condition for a function f to be
analytic in a domain D is clearly the continuity of f throughout D. Satisfaction
of the Cauchy–Riemann equations is also necessary, but not sufficient. Sufficient
conditions for analyticity in D are provided by the theorems in Secs. 22 and 23.

Other useful sufficient conditions are obtained from the differentiation formulas
in Sec. 20. The derivatives of the sum and product of two functions exist wherever

∗The terms regular and holomorphic are also used in the literature to denote analyticity.




