8 Complex Numbers

EXERCISES

1. Reduce each of these quantities to a real number:

(a)
$$\frac{1+2i}{3-4i} + \frac{2-i}{5i}$$
; (b) $\frac{5i}{(1-i)(2-i)(3-i)}$; (c) $(1-i)^4$.
Ans. (a) $-2/5$; (b) $-1/2$; (c) -4 .

2. Show that

$$\frac{1}{1/z} = z \qquad (z \neq 0).$$

3. Use the associative and commutative laws for multiplication to show that

$$(z_1z_2)(z_3z_4) = (z_1z_3)(z_2z_4).$$

- **4.** Prove that if $z_1z_2z_3 = 0$, then at least one of the three factors is zero. Suggestion: Write $(z_1z_2)z_3 = 0$ and use a similar result (Sec. 3) involving two factors.
- 5. Derive expression (6), Sec. 3, for the quotient z_1/z_2 by the method described just after it.
- 6. With the aid of relations (10) and (11) in Sec. 3, derive the identity

$$\left(\frac{z_1}{z_3}\right)\left(\frac{z_2}{z_4}\right) = \frac{z_1 z_2}{z_3 z_4}$$
 $(z_3 \neq 0, z_4 \neq 0).$

7. Use the identity obtained in Exercise 6 to derive the cancellation law

$$\frac{z_1 z}{z_2 z} = \frac{z_1}{z_2} \qquad (z_2 \neq 0, z \neq 0).$$

8. Use mathematical induction to verify the binomial formula (13) in Sec. 3. More precisely, note that the formula is true when n = 1. Then, assuming that it is valid when n = m where m denotes any positive integer, show that it must hold when n = m + 1.

Suggestion: When n = m + 1, write

$$(z_1 + z_2)^{m+1} = (z_1 + z_2)(z_1 + z_2)^m = (z_2 + z_1) \sum_{k=0}^m \binom{m}{k} z_1^k z_2^{m-k}$$
$$= \sum_{k=0}^m \binom{m}{k} z_1^k z_2^{m+1-k} + \sum_{k=0}^m \binom{m}{k} z_1^{k+1} z_2^{m-k}$$

and replace k by k - 1 in the last sum here to obtain

$$(z_1 + z_2)^{m+1} = z_2^{m+1} + \sum_{k=1}^m \left[\binom{m}{k} + \binom{m}{k-1} \right] z_1^k z_2^{m+1-k} + z_1^{m+1}.$$