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EXAMPLE 5. We now illustrate one method of obtaining a harmonic con-
jugate of a given harmonic function. The function

u(x, y) = y3 − 3x2y(5)

is readily seen to be harmonic throughout the entire xy plane. Since a harmonic
conjugate v(x, y) is related to u(x, y) by means of the Cauchy–Riemann equations

ux = vy, uy = −vx,(6)

the first of these equations tells us that

vy(x, y) = −6xy.

Holding x fixed and integrating each side here with respect to y, we find that

v(x, y) = −3xy2 + φ(x)(7)

where φ is, at present, an arbitrary function of x. Using the second of equations (6),
we have

3y2 − 3x2 = 3y2 − φ′(x),

or φ′(x) = 3x2. Thus φ(x) = x3 + C, where C is an arbitrary real number. Accord-
ing to equation (7), then, the function

v(x, y) = −3xy2 + x3 + C(8)

is a harmonic conjugate of u(x, y).
The corresponding analytic function is

f (z) = (y3 − 3x2y) + i(−3xy2 + x3 + C).(9)

The form f (z) = i(z3 + C) of this function is easily verified and is suggested by
noting that when y = 0, expression (9) becomes f (x) = i(x3 + C).

EXERCISES
1. Show that u(x, y) is harmonic in some domain and find a harmonic conjugate v(x, y)

when
(a) u(x, y) = 2x(1 − y); (b) u(x, y) = 2x − x3 + 3xy2;
(c) u(x, y) = sinh x sin y; (d) u(x, y) = y/(x2 + y2).

Ans. (a) v(x, y) = x2 − y2 + 2y; (b) v(x, y) = 2y − 3x2y + y3;
(c) v(x, y) = − cosh x cos y; (d) v(x, y) = x/(x2 + y2).

2. Show that if v and V are harmonic conjugates of u(x, y) in a domain D, then v(x, y)

and V (x, y) can differ at most by an additive constant.
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3. Suppose that v is a harmonic conjugate of u in a domain D and also that u is a
harmonic conjugate of v in D. Show how it follows that both u(x, y) and v(x, y)

must be constant throughout D.

4. Use Theorem 2 in Sec. 26 to show that v is a harmonic conjugate of u in a domain
D if and only if −u is a harmonic conjugate of v in D. (Compare with the result
obtained in Exercise 3.)

Suggestion: Observe that the function f (z) = u(x, y) + iv(x, y) is analytic in D

if and only if −if (z) is analytic there.

5. Let the function f (z) = u(r, θ) + iv(r, θ) be analytic in a domain D that does not
include the origin. Using the Cauchy–Riemann equations in polar coordinates (Sec.
23) and assuming continuity of partial derivatives, show that throughout D the function
u(r, θ) satisfies the partial differential equation

r2urr (r, θ) + rur(r, θ) + uθθ (r, θ) = 0,

which is the polar form of Laplace’s equation. Show that the same is true of the
function v(r, θ).

6. Verify that the function u(r, θ) = ln r is harmonic in the domain r > 0, 0 < θ < 2π

by showing that it satisfies the polar form of Laplace’s equation, obtained in Exercise
5. Then use the technique in Example 5, Sec. 26, but involving the Cauchy–Riemann
equations in polar form (Sec. 23), to derive the harmonic conjugate v(r, θ) = θ . (Com-
pare with Exercise 6, Sec. 25.)

7. Let the function f (z) = u(x, y) + iv(x, y) be analytic in a domain D, and consider the
families of level curves u(x, y) = c1 and v(x, y) = c2, where c1 and c2 are arbitrary
real constants. Prove that these families are orthogonal. More precisely, show that if
z0 = (x0, y0) is a point in D which is common to two particular curves u(x, y) = c1
and v(x, y) = c2 and if f ′(z0) �= 0, then the lines tangent to those curves at (x0, y0)

are perpendicular.
Suggestion: Note how it follows from the pair of equations u(x, y) = c1 and

v(x, y) = c2 that

∂u

∂x
+ ∂u

∂y

dy

dx
= 0 and

∂v

∂x
+ ∂v

∂y

dy

dx
= 0.

8. Show that when f (z) = z2, the level curves u(x, y) = c1 and v(x, y) = c2 of the
component functions are the hyperbolas indicated in Fig. 32. Note the orthogonality
of the two families, described in Exercise 7. Observe that the curves u(x, y) = 0 and
v(x, y) = 0 intersect at the origin but are not, however, orthogonal to each other. Why
is this fact in agreement with the result in Exercise 7?

9. Sketch the families of level curves of the component functions u and v when
f (z) = 1/z, and note the orthogonality described in Exercise 7.

10. Do Exercise 9 using polar coordinates.

11. Sketch the families of level curves of the component functions u and v when

f (z) = z − 1

z + 1
,

and note how the result in Exercise 7 is illustrated here.
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27. UNIQUELY DETERMINED ANALYTIC FUNCTIONS

We conclude this chapter with two sections dealing with how the values of an ana-
lytic function in a domain D are affected by its values in a subdomain of D or on a
line segment lying in D. While these sections are of considerable theoretical inter-
est, they are not central to our development of analytic functions in later chapters.
The reader may pass directly to Chap. 3 at this time and refer back when necessary.

Lemma. Suppose that

(a) a function f is analytic throughout a domain D;

(b) f (z) = 0 at each point z of a domain or line segment contained in D.

Then f (z) ≡ 0 in D; that is, f (z) is identically equal to zero throughout D.

To prove this lemma, we let f be as stated in its hypothesis and let z0 be any
point of the subdomain or line segment where f (z) = 0. Since D is a connected
open set (Sec. 11), there is a polygonal line L, consisting of a finite number of
line segments joined end to end and lying entirely in D, that extends from z0 to
any other point P in D. We let d be the shortest distance from points on L to the
boundary of D, unless D is the entire plane; in that case, d may be any positive
number. We then form a finite sequence of points

z0, z1, z2, . . . , zn−1, zn

along L, where the point zn coincides with P (Fig. 33) and where each point is
sufficiently close to adjacent ones that

|zk − zk−1| < d (k = 1, 2, . . . , n).




