EXERCISES

1. Show that

(a)
$$\exp(2 \pm 3\pi i) = -e^2;$$
 (b) $\exp\left(\frac{2+\pi i}{4}\right) = \sqrt{\frac{e}{2}}(1+i);$
(c) $\exp(z+\pi i) = -\exp z.$

- 2. State why the function $f(z) = 2z^2 3 ze^z + e^{-z}$ is entire.
- 3. Use the Cauchy–Riemann equations and the theorem in Sec. 21 to show that the function $f(z) = \exp \overline{z}$ is not analytic anywhere.
- 4. Show in two ways that the function $f(z) = \exp(z^2)$ is entire. What is its derivative? Ans. $f'(z) = 2z \exp(z^2)$.
- 5. Write $|\exp(2z + i)|$ and $|\exp(iz^2)|$ in terms of x and y. Then show that

$$|\exp(2z+i) + \exp(iz^2)| \le e^{2x} + e^{-2xy}.$$

- 6. Show that $|\exp(z^2)| \le \exp(|z|^2)$.
- 7. Prove that $|\exp(-2z)| < 1$ if and only if $\operatorname{Re} z > 0$.
- 8. Find all values of z such that

(a)
$$e^{z} = -2;$$
 (b) $e^{z} = 1 + \sqrt{3}i;$ (c) $\exp(2z - 1) = 1$
Ans. (a) $z = \ln 2 + (2n + 1)\pi i$ $(n = 0, \pm 1, \pm 2, ...);$
(b) $z = \ln 2 + \left(2n + \frac{1}{3}\right)\pi i$ $(n = 0, \pm 1, \pm 2, ...);$
(c) $z = \frac{1}{2} + n\pi i$ $(n = 0, \pm 1, \pm 2, ...).$

- 9. Show that $\overline{\exp(iz)} = \exp(i\overline{z})$ if and only if $z = n\pi$ $(n = 0, \pm 1, \pm 2, ...)$. (Compare with Exercise 4, Sec. 28.)
- (a) Show that if e^z is real, then Im z = nπ (n = 0, ±1, ±2,...).
 (b) If e^z is pure imaginary, what restriction is placed on z?
- 11. Describe the behavior of $e^z = e^x e^{iy}$ as (a) x tends to $-\infty$; (b) y tends to ∞ .
- 12. Write $\operatorname{Re}(e^{1/z})$ in terms of x and y. Why is this function harmonic in every domain that does not contain the origin?
- 13. Let the function f(z) = u(x, y) + iv(x, y) be analytic in some domain D. State why the functions

$$U(x, y) = e^{u(x, y)} \cos v(x, y), \quad V(x, y) = e^{u(x, y)} \sin v(x, y)$$

are harmonic in D and why V(x, y) is, in fact, a harmonic conjugate of U(x, y).

14. Establish the identity

$$(e^{z})^{n} = e^{nz}$$
 $(n = 0, \pm 1, \pm 2, ...)$

in the following way.

- (a) Use mathematical induction to show that it is valid when n = 0, 1, 2, ...
- (b) Verify it for negative integers n by first recalling from Sec. 7 that

$$z^n = (z^{-1})^m$$
 $(m = -n = 1, 2, ...)$

when $z \neq 0$ and writing $(e^z)^n = (1/e^z)^m$. Then use the result in part (a), together with the property $1/e^z = e^{-z}$ (Sec. 29) of the exponential function.

30. THE LOGARITHMIC FUNCTION

Our motivation for the definition of the logarithmic function is based on solving the equation

(1)
$$e^w = z$$

for w, where z is any *nonzero* complex number. To do this, we note that when z and w are written $z = re^{i\Theta}$ $(-\pi < \Theta \le \pi)$ and w = u + iv, equation (1) becomes

$$e^{u}e^{iv} = re^{i\Theta}$$

According to the statement in italics at the beginning of Sec. 9 about the equality of two complex numbers expressed in exponential form, this tells us that

$$e^u = r$$
 and $v = \Theta + 2n\pi$

where *n* is any integer. Since the equation $e^u = r$ is the same as $u = \ln r$, it follows that equation (1) is satisfied if and only if *w* has one of the values

$$w = \ln r + i(\Theta + 2n\pi)$$
 $(n = 0, \pm 1, \pm 2, ...).$

Thus, if we write

(2)
$$\log z = \ln r + i(\Theta + 2n\pi)$$
 $(n = 0, \pm 1, \pm 2, ...),$

equation (1) tells us that

$$e^{\log z} = z \qquad (z \neq 0),$$

which serves to motivate expression (2) as the *definition* of the (multiple-valued) logarithmic function of a nonzero complex variable $z = re^{i\Theta}$.

EXAMPLE 1. If
$$z = -1 - \sqrt{3}i$$
, then $r = 2$ and $\Theta = -2\pi/3$. Hence
 $\log(-1 - \sqrt{3}i) = \ln 2 + i\left(-\frac{2\pi}{3} + 2n\pi\right) = \ln 2 + 2\left(n - \frac{1}{3}\right)\pi i$
 $(n = 0, \pm 1, \pm 2, ...).$