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In most epidemics it is difficult to determine how many new infectives there are
each day since only those that are removed, for medical aid or other reasons, can be
counted. Public health records generally give the number of removed per day, per
week, or per month. So to apply the model to an actual disease, we need to know the
number removed per unit time, namely, dR/dt as a function of time. Using previous
results, we can obtain an equation for R alone
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which can only be solved in a parametric way. However this form is not convenient.
Of course we can always compute the solution numerically if we know a, b, S0 and
N0. But, usually we don’t know all the parameters. Thus, we try to carry out a best
fit procedure, assuming, of course, that the model actually is a reasonable description
of the epidemic.

Kermack and McKendrick argued that if the epidemic is not large, R/ρ is small.
Using this observation, we can approximate equation (1) as
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Factoring the right-hand side quadratic in R, we can integrate the equation to get
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The removal rate is then given by

dR

dt
=
aα2ρ2

2S0

sech2
(αat

2
− φ
)
, (4)

which involves only three parameters, namely aα2ρ2/(2S0), αb and φ. With epidemics
that are not large, it is this function of time which we should fit to the Public Health
records. On the other hand, if the disease is such that we know the actual number of
the removed class, then it is R(t) that we should use. If R/ρ is not small, however,
we must use the original differential equation for dR/dt.

Examples

Bombay Plague Epidemic, 1905-6

This epidemic lasted for almost a year. Most of the victims who got the disease died,
the number removed per week, that is dR/dt, is approximately equal to the deaths
per week. On the basis that the epidemic was not severe (relative to the population
size), Kermack and McKendrick compared the actual data with (4) and determined
the best fit for the three parameters and got

dR

dt
= 890sech2(0.2t− 3.4). (5)

Figure 1 is from [4] showing the comparison between data and their model. Kermack
and McKendrick [4] note

plague in man is a reflection of plague in rats, and that with respect to
the rat (1) the uninfected population was uniformly susceptible; (2) that
all susceptible rats in the island had an equal chance of being infected;
(3) that the infectivity, recovery, and death rates were of constant value
throughout the course of sickness of each rat; (4) that all cases ended
fatally or became immune; and (5) that the flea population was so large
that the condition approximated to one of contact infection. None of
these assumptions are strictly fulfilled and consequently the numerical
equation can only be a very rough approximation. A close fit is not to
be expected, and deductions as to the actual values of the various con-
stants should not be drawn. It may be said, however, that the calculated
curve, which implies that the rates did not vary during the period of the
epidemic, conforms roughly to the observed figures.
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Figure 1: Bombay plague data and fit from [4]
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We can also see the threshold effect in this model by examining the removed
population (3). At the end of the epidemic (t→∞), the removed population is

R(∞) =
ρ2
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ρ
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)
+ α

]
, α =
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ρ
− 1

)2

+
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ρ2
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.

Since N0−S0 is the initial number of infected individuals, it is reasonable to assume
this number is small compared with S0 and we obtain

R(∞) ≈ 2ρ

S0

[(
S0 − ρ

)]
.

If I0 is small then S0 ≈ N0. If N0 is equal to (or less than) ρ, no epidemic can take
place. If however, N0 slightly exceeds the value ρ then a small epidemic occurs. If
we write N0 = ρ + ε then R(∞) ≈ 2ε. To a first approximation, the size of the
epidemic will be twice the excess if ε is small compared with N0. So at the end of
the epidemic, the population will be just as far below the threshold density, as it
initially was above it.

Influenza Epidemic in an English Boarding School, 1978

In 1978, anonymous authors sent a note to the British Medical Journal reporting an
influenza outbreak in a boarding school in the north of England. Figure 2 shows the
data accompanying the note. Table 1 gives values, estimated from the figure, of the
number of individuals confined to bed each day.

The outbreak was in a boys school with a total of 763 boys. Of these, 512 were
confined to bed during the epidemic which lasted from the 22nd of January to the
4th of February. It also seems that one infected boy started the epidemic. Many of
our model assumptions apply to this scenario; however, the epidemic is severe so we
cannot use the approximation we made in the last example. Parameter fitting has
to be done by solving the full ordinary differential equations of the SIR model.

We can take a simpler approach to get an estimate of the parameters describing
this disease. The epidemic started with one sick boy, with two more getting sick one
day later. Thus, we have I0 = 1, S0 = 762 and

dS

dt
≈ −2 per individual per day.

a =
−dS/dt
SI

≈ 2

762× 1
= 0.0026.
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Figure 2: Influenza epidemic in an English Boarding School.

Now, b is the rate at which infected people are removed from the population. The
report says that boys were taken to the infirmary within 1 or 2 days of becoming
sick. So crudely, about 1/2 of the infected population was removed each day, or
b = 0.5 per day. This gives a value of ρ = b/a = 192. Figure 3 shows a plot of the
phase plane with direction field and plots of S(t) and I(t) for these parameters. We
predict Imax = 306 and S(∞) = 16 from the model.

Murray [3] reports performing a careful fit of model parameters using the full
ODE model to obtain ρ = 202, a = 2.18 × 10−3/day. The initial conditions are the
same, N0 = 763, S0 = 762 and I0 = 1. We note that these parameter values are close
to our crude estimate and predict a similar course for the disease. The conditions for
an epidemic are clearly met according to the model since S0 > ρ. The epidemic is
also severe since R/ρ is not always small; R(∞) = 747 using our ‘crude’ parameters
(see Fig. 4).
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Figure 3: Model predictions compared to data for the English boys school using the
SIR model with a = 0.0026, b = 0.5, S0 = 762 and I0 = 1.
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Day Number
1 3
2 8
3 28
4 75
5 221
6 291
7 255
8 235
9 190
10 125
11 70
12 28
13 12
14 5

Table 1: Boarding School Data for Individuals Confined to Bed
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Figure 4: Model predictions compared to data for the English boys school using the
SIR model with a = 0.0026, b = 0.5, S0 = 762 and I0 = 1.
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Plague Outbreak in Eyam Village, 1665-66

In a wonderfully altruistic incident, the village of Eyam, England sealed itself off in
1665-66 when the plague was discovered, so as to prevent it spreading to neighboring
villages. There is a museum in Eyam that tells the story ( http://www.eyammuseum.demon.co.uk/
). The villagers were successful in controlling the spread to other villages, but by the
end of the epidemic only 83 of the original population of 350 survived. So we know
S0 = 350 and S(∞) = 83, but how do we obtain other information about parameters
for a model? The discussion in this section is based heavily on [6].

The source of the plague in Eyam is attributed to the Great Plague of London
(1664-1666) in which one sixth of the population succumbed to the disease. A tailor
in Eyam received cloth from London which was infected with plague-carrying rat
fleas that can produce plague in humans by biting their victims. The first victim
was his assistant, George Viccars, who was buried September 7, 1665. Thereafter, the
plague started to infect other victims as shown in Table 2. At this point the plague

1665 September 6 deaths
October 23 deaths
November 7 deaths
December 9 deaths

1666 January 5 deaths
February 8 deaths
March 6 deaths
April 9 deaths
May 4 deaths

Table 2

appeared to be diminishing. But at the start of summer, the plague re-established
itself. The next 5 months of deaths are shown in Table 3. Even though the dates
and numbers are reported as deaths, they were actually burial dates. It is believed
that burials were almost immediate for health reasons. However, toward the end of
the outbreak there were no family members to bury the dead and burials might have
been delayed. Marshall Howe was known to be a self-appointed grave digger who
paid himself from the belongings of the dead.

The original strain of the Eyam plague is believed to be bubonic - from the rat
fleas. It is believed that the outbreak did not continue in this form but turned at
least partially to pneumonic, i.e. infected directly from person to person. This belief
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1666 June 19 deaths
July 56 deaths
August 77 deaths
September 24 deaths
October 14 deaths

Table 3

is based on the fact that even though infected rodent fleas are temporarily important
in the causation of bubonic plague in man, the continued existence of this form of
the disease depends on the persistence of infected rodents. In this case, the original
rodent was 150 miles away.

The SIR model is reasonable for this plague epidemic for the following reasons

1. The transmission of the plague is a rapidly spreading infectious disease.

2. The complete isolation of the village keeps N fixed. (This assumption is really
only approximate since some wealthy villagers and some children fled. A few
births and natural deaths were also recorded. However, the total population
for the purposes of the model can be estimated at the outbreak time as the
sum of final survivors and those who died during the plague. These figures are
known.)

3. Only three cases of infected individuals are known to have survived. (One of
these was Marshall Howe who presumable built up some immunity by being
involved with repeated burials.) For the purpose of the model we can assume in-
fected people were removed from the population by death. The time-dependent
removed population is measurable from the list of dead.

The SIR model predicts a single peak Imax given by

Imax = N0 − ρ+ ρ ln
ρ

S0

. (6)

However, the Eyam data contain at least two local infection peaks. We noticed
the milder outbreak initially followed by more devastating later effects. Raggett [6]
argues we can apply the SIR model starting in May or June, 1666. Then there is
one peak in the data and the majority of the deaths are included. In the reference,
Raggett starts on June 18. He also uses a time measurement of 15 1/2 days. The list
of dead provides data for the deceased and removed (cumulative deceased). Table 4
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Period Deceased Removed
(1666) (measured at end of period)
June 19 - July 3/4 11.5 11.5
July 4/5 - July 19 26.5 38
July 20 - Aug 3/4 40.5 78.5
Aug 4/5 - Aug 19 41.5 120
Aug 20 - Sept 3/4 25 145
Sept 4/5 - Sept 19 11 156
Sept 20 - Oct 4/5 11.5 167.5
Oct 5/6 - Oct 20 10.5 178

Table 4: Deceased and Removed Populations over the Major Outbreak Period.

gives the data averages because of the half-day in each time interval. The initial time
is taken as June 18, 1666 when R(0) = 0 and N0 = 261. This last figure is obtained
by subtracting the 89 prior deaths from the initial population of 350. (Twelve of the
19 deaths recorded in June occurred prior to June 19.)

Note that the incubation period for human plague is a maximum of 6 days and
the length of the illness is 5 1/2 days. Let’s use a uniform period of 11 days for
the total infection period, as in Raggett. Thus as the end of each time interval, one
measures the infective population by examining the death register for the following 11
days. Using the information so obtained for the removed and infective populations,
the susceptible population is directly estimated at the end of each period using
N0 = S(t) + I(t) + R(t). Table 5 gives these population estimates. Given these
populations, can we determine values of a and b that describe the plague outbreak
of Eyam?

Using the equation

S(∞) = S0 exp[−R(∞)/ρ] = S0 exp(−(N0 − S(∞))/ρ], (7)

from yesterday, we can estimate ρ ≈ 159 using S(∞) = 83, the number of surviving
villagers. Furthermore, using this value of ρ gives Imax ≈ 27 with a corresponding
number of susceptibles being ρ when the number of infectives is Imax. Thus the
corresponding number of removed is 75. From the table of data, the removed pop-
ulation is 70 and 77 on Aug 2 and 3; respectively. So, we have an estimate of the
peak infection time. (Taking I to be 27 on both these dates gives a prediction of
infection periods as 11 days in each case; consistent with our initial assumption.)
Thus, we have an estimate for ρ = b/a. How can we estimate a and b individually?
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Date (1666) S(t) I(t)
July 3/4 235 14.5
July 19 201 22
Aug 3/4 153.5 29
Aug 19 121 20
Sept 3/4 108 8
Sept 19 97 8
Oct 4/5 unknown unknown
Oct 20 83 0

Table 5: Susceptible and Infective Populations at Terminal Period Dates. S(0) =
254, I(0) = 7, R(0) = 0, N0 = 261

We assumed an 11 day infection period, so we would expect a removal rate of unity
over 11 days. Using linear arguments gives an estimated removal rate of about 2.82
based on a 31 day period. The solution to the SIR model using these estimates is
shown in Fig. 5.

If we numerically solve the SIR model using S(0) = 254, I(0) = 7 and R(0) = 0
and ρ = 159, varying b, then setting a = b/159 we can try to find a best fit to the
data in Table 5. We would solve the equations from t = 0 to t = 4 and output 8
data values at time steps of 0.5. Each of these 8 population values are compared to
the data in the table. In this way, we find b = 2.78. We need to remember that the
computed time step of one unit corresponds to a real time interval of 31 days. The
value 2.78 obtained from this fit is quite close to the estimate 2.82 given above.
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Figure 5: Model predictions compared to data for the Eyam plague outbreak using
the SIR model with b = 2.82, a = b/159, S0 = 254, I0 = 7 and R(0) = 0.
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Things to try:

1. Carry out the least-squares fit to the data for the Bombay plague epidemic. Try
to determine parameters for the SIR model and numerically solve the model
equations.

2. Carry out the least-squares fit to the data for the Eyam plague to find the
parameter b.

3. Consider modeling the epidemics in this section using a discrete-time model.
What are appropriate parameters for the model? How do these parameters
compare with the continuous time model?
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