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Geometric manipulation of molecules is an essential elementary component in computational modeling

programs for molecular structure, stability, dynamics, and design. The computational complexity of

transformation of internal coordinates to Cartesian coordinates was discussed before.1 The use of rotation

matrices was found to be slightly more efficient than that of quaternion although quaternion operators have

been widely advertised for rotational operations, especially in molecular dynamics simulations of liquids where

the orientation is a dynamical variable.2 The discussion on computational efficiency is extended here to a more

general case in which bond angles and sidechain torsion angles are allowed to vary. The algorithm of

Thompson3 is derived again in terms of quaternions as well as rotation matrices, and an algorithm with optimal

efficiency is described. The algorithm based on rotation matrices is again found to be slightly more efficient

than that based on quaternions.

Key Words : Rotation operator, Rotation matrix, Quaternion, Internal coordinates

Introduction

Cartesian coordinate modeling is popular in molecular
studies, for example, in molecular dynamics simulations of
biomolecules.4,5 In many other situations, internal coordi-
nates are a natural choice when constraints on internal
coordinates such as bond lengths and bond angles are to be
implemented to reduce the number of degrees of freedom.
Additional dihedral angle constraints from experiments or
structures of homologous protein sequences can be easily
incorporated in internal coordinates.

If the dihedral angles are taken from the actual structure,
and the bond lengths and bond angles are fixed at ideal
values, the degree of deviation from the actual structure
increases with the chain length. For example, a protein
structure with 800 amino acids can show RMSD (Root-
Mean-Square Deviation) as large as 20 Å if all the bond
lengths and bond angles are replaced with ideal values.
However, changes in the bond lengths and angles can be
absorbed into small variations in dihedral angles to
accurately represent the structure. In Ref. 6, it is shown that
protein structures can be represented very accurately (within
0.3 Å) with ideal bond lengths and bond angles if dihedral
angles are slightly modified to minimize RMSD. For this
reason, strategies to take a reduced number of degrees of
freedom in internal coordinates are popular in protein
structure prediction and design studies. 

When internal coordinates are employed for geometry
representation, conversion of the internal coordinates to
Cartesian coordinates is necessary because most of the
realistic energy functions or scoring functions involve terms
that are conveniently evaluated in Cartesian coordinates.
The transformation requires rotation operators: quatern-

ions,7,8 rotation matrices,9 and other transformations10 have
been used. (See Ref. 1 for more detailed discussions.)

Alvarado and Kazerounian1 showed that operation in
rotation matrix is the most efficient for typical protein
chains, and operation using quaternion in the matrix form is
almost equivalent. A more general system than that in Ref.
[1] is considered here in that bond angles are not required to
be kept constant and side chains are not rigid. An efficient
algorithm, which is equivalent to that of Thompson [3], is
derived by employing a simple reference state and perform-
ing rotations in the reverse order. It is shown again that the
method using rotation matrix is slightly more efficient than
quaternion.

A method that requires minimal number of rotation
operations is described below. The method can be described
in abstract terms, considering rotations as building blocks.
The method is first described in the context of quaternion
operators for convenience, and the same method is stated in
terms of rotation matrices later. Efficiencies of the two
methods using quaternions and rotation matrices are then
compared. 

Method of Constructing a Chain Molecule 

with Minimal Number of Operations

A linear chain involving N atoms is considered. Branches
can be easily added once the backbone is constructed. This
method can be combined with an analytical loop closure
algorithm11 to manipulate chains with internal loops, for
example, polypeptides with disulfide bonds or cyclic chains.

A linear chain can be fully described by N sets of bond
lengths b, bond angles θi, and dihedral angles φi as follows:
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N

 = b
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i
, φ

i
( ), i = 1, Λ, N{ }



2     Bull. Korean Chem. Soc. 2007, Vol. 28, No. 10 Chaok Seok and Evangelos A. Coutsias

where the backbone atoms of the chain are numbered from 1

to N, bi is the bond length between the nodes at i−1 and i, θi

is the bond angle formed by the three nodes i−2, i−1, and i,

and φi is the dihedral angle defined by the four nodes i−3, i−
2, i−1, and i. Six degrees of freedom, b1, θ1, θ2, φ1, φ2, and φ3,

do not affect the internal geometry of the chain, but define

the absolute location and orientation of the chain in space

with respect to ‘virtual’ nodes i = −2, −1, and 0. Therefore,

the internal geometry of the chain can be fully described by

N−1 bond lengths, N−2 bond angles, and N−3 dihedral

angles.

To construct the molecule, simple rotations are applied

starting from a simple initial arrangement. A straight, linear

conformation which is laid along the positive x-axis is taken

as the initial geometry. The initial arrangement is defined by

. (2)

Next, Cartesian coordinates for the nodes are determined

successively. Placing successive atoms requires a rotation at

each step, to the desirable θi and φi values. There is a “best”

way for performing these rotations.

Recall that2,12 rotating a vector v about axis u by angle w is

affected through conjugation by the quaternion q

,  (3)

with q given by

.  (4)

Here, ‘*’ is the operator of quaternion multiplication,

defined below (see Eq. 20). The i-th link in the chain is

placed by performing, in succession, all indicated rotations

along the chain about the local axes uk by wk, where k = 1, 2,

Λ, i.

The net quaternion defining this rotation, qi, is constructed

by the product of individual quaternions as

,  (5)

where p1 and p2 can be set to unit quaternions (p*p = 1) if the

node 1 and 2 are to be placed on the x-axis for simplicity. It

is important to note that in this construction, the axes of each

successive rotation, uk are determined by the effect of all

previous rotations on the initial vector,  as

.  (6)

However, by carrying out the rotations in the reverse

order, the same net rotation can be affected by utilizing the

initial axes as 

.  (7)

The reason for this, obvious geometrically, can be also seen

as follows:

 (8)

.

 is the multiplication of , rotation about the x-axis

by φi, and pz(θi), rotation about the z-axis by π−θi:

. (9)

This construction is understood as follows: start morphing

the chain from its end, node 1; rotate the bond vector (bi, 0,

0) about the positive z-axis by angle π−θi (this enforces

correct bond angle at node i); rotate about the positive x-axis

by angle φi to create the proper dihedral angle; then apply the

rotation accumulated by placement of all the previous atoms.

The rotations are simple, either around the x- or z-axis, and

always applied to a vector on the x-axis. The algorithm can

thus be implemented very efficiently. The calculation of the

Cartesian coordinate Ri for the ith node is now collected as

 (10)

,  (11)

where i = 1, 2, Λ, N. R0 and first few quaternions can be

chosen to give simple arrangement for the first few atoms

when only internal arrangement is of interest, or be chosen

to place the chain in a precise location and orientation in

space depending on the purposes.

Comparison of Rotation Matrix and Quaternion Methods

Rotation matrix method. One can construct a 3 × 3

rotation matrix Ui for each (θi, φi) pair, and multiply by a

vector to get

,  (12)

where r0 is an arbitrary unit vector. The i-th rotation matrix

Ui depends on all the angles indexed 1 through i because the

axis of rotation changes with previous angles. This can be

avoided if rotations are performed in the reverse order:

,  (13)

where the superscript 0 implies rotation about fixed axes.

The rotation matrix  can be expressed as a multiplication

of two rotation matrices  and , where Uz is

matrix for rotation by π−θi around the z-axis, and Ux for

rotation by φi around the x-axis. This simplification is made

possible by setting r0 equal to a unit vector  along the x-

axis. The resulting  is
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. (14)

Each node i is added to a growing chain with i−1 nodes by

updating the accumulated rotation, 

,  (15)

applying the rotation on he vector (bi, 0, 0), and translating

the resulting vector by Ri-1.

The computational cost of this procedure is counted as

follows:

1. Calculation of cosines and sines, cosφi, sinφi, cosθi, and

sinθi.

2. Rotation update,  (12 multiplications

and 6 additions).

3. Rotation update,  (12 multiplications

and 6 additions).

4. First column of  (no cost).

5. Scaling by bi and shift by Ri−1 (3 multiplications and 3

additions).

In fact, the above algorithm is equivalent to the algorithm

described by Thompson3 in 1967 using rotation matrices in a

local coordinate system. A physical procedure of chain

construction is provided here, and an algorithm using

quaternions can be easily derived using this procedure, as

shown above.

The computational cost of adding an atom at a branching

point is the same as the above if the rotation matrix Vi has to

be updated for later atoms connected to it. If an atom is

terminal, only the first column of that rotation matrix is

required, which is

.  (16)

The cost of adding a terminal node is therefore 11 multi-

plications and 6 additions for Eq. (16) and 3 multiplications

and 3 additions for scaling by bi and shift by Ri−1, in addition

to the cost of calculating cosines and sines.

Quaternion method. Quaternions, instead of rotation

matrices, can be used to accumulate successive rotations as

follows:

,  (17)

where  is given by Eq. (9). The four components of the

quaternions  and  are

,  (18)

,  (19)

Noting12 that multiplication of two quaternions a = (a0, a)

and b = (b0, b) is given by

,  (20)

and the rotation matrix corresponding to quaternion q = (q0,

q1, q2, q3) is

, (21)

the cost of computation for adding atom i is counted as

follows:

1. Division of the angles θi and φi by 2 (2 divisions).

2. Calculation of cosines and sines, 

and . 

3. Quaternion update,  (8 multiplications,

4 additions).

4. Quaternion update,  (8 multiplications, 4

additions).

5. First column of U(qi)/2 (6 multiplications, 4 additions).

6. Scaling by 2bi and shift by Ri−1 (4 multiplications, 3

additions).

The computational cost of adding a terminal atom is the

same as above because qi needs to be calculated to get the

first column of U(qi)/2.

Comparison of computational efficiency. The minimum

number of mathematical operations required for calculation

of the position of one atom to be added to a growing chain is

summarized in Table 1.

The total number of operations for constructing the whole

chain is approximately the number of atoms times the above

numbers. Note that this linear dependence on the number of

atoms comes from the reverse rotation. If the operations cos

and sin are assumed to be 20 times more expensive than +,

−, ×, and ÷ , which are assumed to be equal in

computational time, the relative computational costs are 122

and 123 for rotation matrix and quaternion methods,

respectively. If, alternatively, the computation of cos and sin
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Table 1. Comparison of the number of operations for the two
methods

Method + or − × ÷ cos sin

Rotation matrix 15 27 0 2 2

Quaternion 15 26 2 2 2

Table 2. Comparison of the number of operations for the two
methods when applied to two proteins of different sizes

Method Kinase keratin

Rotation matrix 105 831 269 971

Quaternion 115 989 296 799

Rotation matrix with half-tangent formula 81 313 207 233

Quaternion with half-tangent formula 89 585 229 235
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is performed using the familiar half-tangent formulas

, (22)

the costs of the two methods then become 96 and 95 FLOPs,

respectively (again assuming the cost of the tangent as 20

operations).

Using rotation matrices or quaternions for accumulating

rotations for non-terminal atoms are therefore almost

equivalent in terms of computational cost, but quaternions

require more operations for terminal atoms. Overall, rotation

matrix calculation is more efficient, the exact cost depending

on the number of terminal atoms. Table 2 shows a com-

parison of the number of FLOPs when the two methods are

applied to two proteins, Abl tyrosine kinase and heparin-

binding growth factor, following Ref. 1. The kinase has 62

amino acids: MNDPNLFVALYDFVASGDNTLSITKGEK-

LRVLGYNHNGEWCEAQTKNGQGWVPSNYITPVNS.

Keratin has 154 amino acids: MAAGSITTLPALPEDGG-

SGAFPPGHFKDPKRLYCKNGGFFLRIHPDGRVDGVR

EKSDPHIKLQLQAEERGVVSIKGVSANRYLAMKEDG

RLLASKSVTDECFFFERLESNNYNTYRSRKYTSWVA

LKRTGQYKLGSKTGPGQKAILFLPMSAKS. According

to Table 2, the rotation matrix method is about 10% more

efficient whether the half-tangent formula of Eq. (22) is used

or not, because of the differences in FLOPs required to

invert terminal atoms.

Discussion

An algorithm with minimal rotation operations for inter-

conversions between internal and Cartesian coordinate

systems for a molecular chain is described, starting from a

simple, straight reference state and applying rotations on the

chain backwards. The rotation matrix formula is equivalent

to that of Thompson.3 The number of algebraic operations is

reduced compared to the methods described in Ref. 1 due to

the use of a simpler reference. In Ref. 1, the cost is 70

operations (+, −, ×, and ÷ ) for calculation of operator and

15 for placement of atom when rotation matrices are used,

and 74 and 15, respectively, when quaternions are used. In

the algorithms described here, the cost is 36 and 6 with

rotation matrices, and 37 and 6 with quaternions. (All

methods require equal numbers of sin/cos evaluations). The

conclusion that the use of rotation matrices results in slightly

more efficient computation than the use of quaternions is

maintained. Efficient transformation of coordinate systems

can facilitate studies on protein structure especially when

local constraints are incorporated in natural manners.
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