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Understanding energy landscapes is a major challenge in chemistry and biology. Al-

though a wide variety of methods have been invented and applied to this problem,

very little is understood about the actual mathematical structures underlying such

landscapes. Perhaps the most general assumption is the idea that energy landscapes

are low-dimensional manifolds embedded in high-dimensional Euclidean space. While

this is a very mild assumption, we have discovered an example of an energy landscape

which is non-manifold, demonstrating previously unknown mathematical complexity.

The example occurs in the energy landscape of cyclooctane, which was found to have

the structure of a reducible algebraic variety, composed of the union of a sphere and

a Klein bottle, intersecting in two rings.

a)Electronic mail: smartin@sandia.gov
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I. INTRODUCTION

The energy landscape of a molecule can provide insight into that molecule’s structure and

function. Numerous approaches have been employed to understand the nature of these land-

scapes for different molecules1,2, and some notable discoveries have been made, including the

hypothesized existence of funnel-like structures that serve to guide complex conformational

changes in proteins3. In general, however, energy landscapes remain poorly understood. Ex-

perimental methods such as nuclear magnetic resonance (NMR) and x-ray crystallography

cannot easily detect atomic-scale conformational motion, and computational methods are

quickly overwhelmed by the dimensionality of the problem (3N for N atoms). As a result,

very little is known about the basic mathematical structure underlying energy landscapes.

One of the approaches that has been applied in the study of energy landscapes is di-

mension reduction4–11. By representing a molecule with N atoms in Cartesian space, we

can encode a given conformation with 3N variables. Since bond lengths, angles, steric con-

straints, et cetera influence the positions of the atoms, there are numerous relationships

between the 3N variables. Dimension reduction can be used to gain insight into such re-

lationships, ideally obtaining a lower dimensional (¿ 3N) but equivalent representation of

the conformations. Of course dimension reduction is itself a difficult problem, requiring dif-

ferent assumptions depending on the approach taken. The standard approach is Principal

Component Analysis (PCA)12 and assumes a linear structure. More general approaches are

non-linear and assume an orientable manifold structure13,14.

While dimension reduction has provided insight into the study of molecular motion, there

is no reason a priori to assume motion constrained to a manifold, either linear (as in the

case of PCA) or non-linear. In fact, we have discovered an example of an energy landscape

that is non-manifold. Our example uses cyclooctane, a cyclic alkane used in the manufacture

of plastics, adhesives, fibers and coatings. This relatively simple molecule has been studied

in chemistry for over 40 years15,16, and has attracted particular attention in computational

chemistry11,16–20. It has a surprisingly complex potential energy landscape, and a definitive

characterization of the conformation space has remained elusive11,16,20.

By applying techniques from the fields of computational algebraic geometry and topology,

as well as non-linear dimension reduction, we have uncovered new insights into the energy

landscape of cyclooctane. We find that the mathematical structure underlying the energy
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landscape is a reducible algebraic variety, composed of the union of a sphere and a Klein

bottle (a non-orientable manifold), intersecting in two rings. This result reveals previously

unrealized complexity in molecular conformation and points towards the use of emerging

tools that can provide additional understanding of energy landscapes.

II. BACKGROUND

A. Cyclooctane

Cyclooctane is a saturated eight-member cyclic compound with chemical formula C8H16.

Cyclooctane has received attention in computational chemistry because it has multiple con-

formations of similar energy, a complex potential energy landscape, and significant steric

influence from the hydrogen atoms on preferred conformations15–17. Cyclooctane is also

simple enough that there are enumerative algorithms available which can provide a dense

sampling of the conformation space20,21. These algorithms show from first principles that

the conformation space has two degrees of freedom, suggesting that the space is a surface

(but not necessarily a manifold).

Using dimension reduction methods, we have analyzed the cyclooctane conformation

space11. In our previous analysis, we used trans,trans-1,2,4-trifluorocyclooctane. In the

present analysis, we use pure cyclooctane (wherever necessary, we have repeated our pre-

vious efforts using pure cyclooctane). We generated a dataset of 1,031,644 cyclooctane

conformations, enumerated using a triaxial loop closure algorithm set to assume fixed bond

length and angles21. Each conformation is placed in Cartesian space via the 3D position

coordinates of the atoms in the molecule. The conformations are aligned to a reference

conformation such that the Eckart conditions are satisfied22, and the final positions of a

given conformation are concatenated to obtain a vector in R72. The resulting collection is a

dataset {xi}1,031,644i=1 ⊂ R72 which is presumed to describe a surface. Repeating our previous

work11, we applied the Isomap dimension reduction algorithm14. Our analysis is summarized

in Figure 1.
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B. Terminology

At this point, we digress for a moment to clearly define our use of the terms “surface”

and “landscape.” In mathematics, the term surface is used to describe an object with two

degrees of freedom, such as a 2D manifold, or a 2D algebraic variety. This is how we use

the term surface. The term surface is used more loosely in the study of molecular science.

In particular, the term Potential Energy Surface (PES) is often used in the study of energy

landscapes. Here the term surface has no connection to 2D, but rather refers to the high

dimensional function (typically À 2) underlying the free energy landscape. To confuse the

matter further, the term energy landscape is also loosely defined, in that it can be used to

refer to the free energy landscape (sometimes called the free energy surface) or the PES. We

use the term energy landscape to refer to the PES.

C. Algebraic decomposition and triangulation

As in our previous analysis11, we found that the Isomap representation of the cyclooctane

conformation space is a 3D visualization of an object that requires 5D for a full represen-

tation. The conformation space appears to be the union of a sphere and an hourglass

intersecting in two rings, but what are we missing by using 3D instead of the necessary 5D

in Figure 1(c)?

To answer this question, we investigated the intersection rings by using local dimen-

sion estimation. We identified 2D and 3D neighborhoods within the dataset23. Perhaps

unsurprisingly, the 3D neighborhoods were in the vicinity of the intersection rings in the

Isomap reduction. However, these neighborhoods revealed an unexpected geometry. When

projected using local PCA, the 3D neighborhoods of the intersection rings had the non-

manifold geometry of two intersecting planes, as shown in Figure 2(a)-(c). We modeled the

3D neighborhoods by fitting two planes through the data points using quadratic polynomials.

These polynomials were fit using least squares optimization, with constraints to guarantee

that the solution factored as two intersecting planes (an algebraic decomposition). Although

the minimization problem was nonlinear, we were able to solve it using the Singular Value

Decomposition (SVD) followed by an eigenvalue decomposition23. An example of two fitted

planes is shown in 2(c).
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Our characterization of the intersection rings indicates that the cyclooctane conformation

space has non-manifold self-intersections known as algebraic double curves. These singu-

larities can be removed by decomposing the space into the sphere and hourglass seen in

Figure 1(c). To perform this decomposition, we used point set triangulation. To reduce the

computational effort for the triangulation, we first subsampled from the approximately 1M

conformations to obtain a reduced dataset containing 6,040 conformations (used in Figures

1 and 2). The subsampling was performed in R24 using only ring atom coordinates such that

no two points in the dataset were closer than ε = 0.12 Euclidean distance in R24 (≈ 0.05 Å

root mean square distance). The triangulation was obtained using a modified version of an

incremental surface reconstruction algorithm for high dimensional data23,24. A triangulation

of our 6,040 point dataset in shown in Figure 2(d). We performed the entire subsampling

and triangulation process 5 times to verify our calculations. We produced 5 different trian-

gulations with 6,040 (ε = 0.12); 7,114 (ε = 0.11); 8,577 (ε = 0.10); 10,503 (ε = 0.09); and

13,194 (ε = 0.08) vertices.

III. RESULTS

A. Topological classification

We verified the accuracy of the 5 triangulations by computing Betti numbers. Betti

numbers are topological invariants which quantify large scale features of a space25. The

first Betti number counts the connected components of the space; the second Betti number

counts the non-contractible loops; and the third Betti number counts enclosed volumes. We

computed Betti numbers using the Plex toolbox (www.comptop.stanford.edu) and Linbox

(www.linalg.org). We used Plex to compute boundary operator matrices and Linbox to

compute matrix ranks. The Betti numbers are obtained from the matrix ranks.

For each of the 5 triangulations, we obtained Betti numbers (1,1,2). Betti numbers can

be used to classify compact connected (manifold) surfaces without boundary, but since the

cyclooctane surface is non-manifold, the Betti numbers (1,1,2) are uninformative. However,

using our triangulation of the conformation space, we decomposed the object into the two

components apparent in Figure 2(d): the outer sphere and the enclosed hourglass. Both of

these objects were found to be compact connected (manifold) surfaces without boundary,
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each sharing points on the two intersection rings.

Unsurprisingly, the Betti numbers of the spherical component were (1,0,1), which are the

Betti numbers of a sphere. Surprisingly, the Betti numbers of the hourglass were (1,1,0).

These are the Betti numbers of a Klein bottle, which is a compact connected non-orientable

surface without boundary. There are many ways to describe a Klein bottle, but for our

purposes the best way uses two Möbius strips. A Möbius strip is a non-orientable surface

with boundary which can be obtained by taking a rectangular piece of paper, giving one of

the ends a half-twist, then gluing the ends together. A Möbius strip has only one side and

one edge. A Klein bottle can be obtained by gluing two Möbius strips together along their

edges. This operation cannot be performed in 3D without tearing the resulting surface.

Hence the Klein bottle cannot be embedded in less than 4D. This fact agrees with our

previous observation that 5D is necessary to fully capture cyclooctane conformation space.

B. Dimension reduction

To further understand the cyclooctane conformation space, we examined projections from

torsion space. Any molecule can be represented using internal dihedral angles known as

torsion angles. In the case of cyclooctane, we have 8 carbon atoms in a ring so that we can

describe the relative positions of the ring atoms using 8 torsion angles. Further, there is a

homeomorphism (topological equivalence) of the conformation space using these 8 torsions

to the conformation space we have previously employed (in R72). This homeomorphism

arises from the fact that the 8 torsions can be used to place the 8 ring atoms in Cartesian

space, and that the positions of the hydrogens can then be determined according to minimum

energy11.

We used distance geometry to derive 5 canonical conformations in terms of torsion

angles26. Let u, v, w be defined such that

cosu = (1−
√
2− cos θb)/(1 + cos θb)

cos v = cos2 θb/ sin
2 θb

cosw = (3 cos2 θb − 1)/ sin2 θb,

where θb is the (fixed) bond angle, taken by us to be 115◦.
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Using u, v, w, we obtain conformations

cr = (u,−u, u,−u, u,−u, u,−u)T

b1 = (0, v, 0,−v, 0, v, 0,−v)T

b2 = (v, 0,−v, 0, v, 0,−v, 0)T

c1 = (v, 0,−v, w,−v, 0, v,−w)T

c2 = (v,−w, v, 0,−v, w,−v, 0)T .

These conformations are known as the crown (cr), boat (b1,b2), and chair (c1, c2) conformations15,

shown in Figure 3(a). We have discovered that they give an orthogonal basis for the 5 most

important dimensions in the 8D cyclooctane torsion space. We refer to this basis as the

crown-boat-chair basis. The crown-boat-chair basis can be used to understand the geometry

of the cyclooctane conformation space, shown in Figure 3(b-h): it can be used to reproduce

analytically the previous result obtained using Isomap (b); demonstrate how the Klein bottle

can be decomposed into two Möbius strips (e,f); and provide a fully 2D reduction of both

the sphere (c,d) and Klein bottle (g,h) components.

C. Conformation space

Hendrickson identified 10 conformations in his seminal work on cyclooctane15: crown

(Cr); chair-chair (CC); twist-chair-chair (TCC); boat (B); saddle, also known as twist-boat

(TB); boat-boat (BB); boat-chair (BC); twist-boat-chair (TBC); chair (C); and twist-chair

(TC). Each of Hendrickson’s 10 conformations have certain symmetries when we consider

ring atoms. These symmetries are obtained by rotation and reflection of the conformation in

physical space. (When such a change occurs as a result of molecular motion, i.e. by changes

in torsion angles, it is known as a pseudorotation.) One way to quantify these symmetries

is by examining torsion angles. The crown conformation, for example, is highly symmetric

and can exist in only two states: ±cr. The boat conformation is also very symmetric but

can exist in four states: ±b1, ±b2. In general, conformations on the spherical component

of the cyclooctane space have the symmetry (t1, t2, t3, t4, t1, t2, t3, t4) and absent additional

symmetry will exist in eight states. Conformations on the Klein bottle component have no

such constraint and absent additional symmetry will exist in sixteen states.
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In Figure 4 we have located each instance of Hendrickson’s 10 conformations in our

representation of the cyclooctane conformation space. Also shown in Figure 4 are two

additional conformations, which we call peak (P) and saddle (S). P and S occur on the

intersection rings and within the set of intersection ring conformations they are energy

maxima (P) and minima (S). Figure 4 can be used to understand how particular cyclooctane

conformers influence the topology and geometry of the full conformation space. As an

example, consider the spherical component of the conformation space in Figure 4(a). There

are two Cr conformers, related to each other through reflection. This reflection occurs

through the center of the sphere, so that the two Crs are opposite each other on the north and

south poles. At a high northern latitude, there are four TCCs, related to each other through

rotation, thus forming a ring. In the southern hemisphere, there are four additional TCCs,

forming their own ring, and related to the northern TCCs through reflection. Similarly,

there are four northern and four southern CCs, Ss and Ps. On the equator, there are four

Bs and BBs, related through rotation, again forming rings. Finally, there are eight TBs,

related to each other by both rotation and reflection. Since reflection is through the center

of the sphere, reflected TBs again lie on the equator. (In fact this also occurs with the

Bs and BBs, except that the reflected Bs and BBs can also be obtained by rotation.) All

of these symmetries are accommodated by the topology of the sphere. If we now consider

distance as a constraint, we see how the particular conformers influence the geometry of

the sphere. Both TCCs and CCs are very similar to Crs so that they are near the poles.

They are also very similar to each other so form small diameter (high latitude) rings. By

comparison, Bs and BBs are distinct from Crs and from each other so are far from the poles

and form large diameter (equatorial) rings. These rings are then connected by meridians

(e.g. Cr-TCC-S-B-S-TCC-Cr) to form the sphere.

Similar observations can be made to understand why the Möbius strip occurs in Fig-

ure 4(b). The S and P conformers are connected in a central ring corresponding to the

northern S and P intersection ring in Figure 4(a). These conformations are related by rota-

tion, i.e. the Ss are related by rotation, as are the Ps, while their reflections occur on the

red Möbius strip (or southern intersection ring). The BCs also form a ring, again related

by rotation, with the reflected ring occurring on the red Möbius strip. If we account for

distance, the BC ring is approximately twice as long as the central S and P ring (note there

are twice as many BCs as there are Ss or Ps). Further, each point on the central ring is close
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in distance to two points occurring on opposite sides of the BC ring (e.g. a P is close to two

opposite BCs). Thus we have a long ring with opposite points connected via a short ring:

a Möbius strip. The TBC ring is similar to the BC ring. The Cs and TCs are analogous to

the equatorial ring in Figure 4(b), in that they capture both rotation and reflection. The

Cs and TCs also serve to connect the blue and red Möbius strips, forming the Klein bottle.

D. Energy landscape

In addition to conformation, we must of course consider energy to obtain a full un-

derstanding of cyclooctane. Using TINKER (dasher.wustl.edu), we computed the MM3

energy27 for each conformation in our 6,040 point dataset. We also used TINKER to investi-

gate four transition states previously discovered using quantum calculations16,28. These tran-

sition states are Cr (via TCC) → TS1 → TBC, TBC → TS2 → BC, TBC → TS3 → TBC,

and BC → TS4 → BB. The third state TS3 is a pseudorotation of TBC. (In addition, B

and C were found to be transition states28, although these are not included in our analysis.)

We verified that these four conformations were transition states using vibrational analy-

sis with MM3 energy in TINKER. Finally, we used structure minimization and TINKER’s

implementation of the Elber-Karplus Lagrangian multiplier-based reaction path following

algorithm29 to locate paths through conformation space connecting the various conformers

via the transition states. The results of these investigations are shown in Figure 5.

Figure 5 summarizes most of what is known about cyclooctane’s geometry. There are

three conformation families: crown (Cr, CC, and TCC), boat (B, BB, and TB), and boat-

chair (BC, TBC, C, and TC). There are two major transition states TS1 and TS4 which

provide interconversion between the three families, and there are additional minor transi-

tion states TS2,TS3 (which appears to be the TC conformation), B, and C which provide

interconversions within the families. Finally, the topology of the landscape can be described

as a sphere intersecting a Klein bottle. In fact, it was previously thought that the con-

formation space of cyclooctane could be qualitatively modeled as a sphere intersecting a

torus30. This observation was made using ring puckering coordinates and a limited sample

of conformations26.

Perhaps more interesting is how the topology of the cyclooctane energy landscape sup-

ports the fact that the BC is the dominant conformation. We first observe the relatively
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high energy of the boat family, making B, TB, and BB unlikely conformations. Next we

note that while BC is the global energy minimum, it is only slightly lower than Cr, with

an approximate difference of 1 kcal/mol. Why then is BC the dominant conformation? We

have observed that only two distinct Cr conformers exist, located on opposite poles of the

spherical component of the conformation space. These conformers are accessible from the

rest of the conformational space only via the relatively high energy TS1 transition state. In

contrast, there are sixteen distinct BC conformers. Each of these is connected via low energy

TS2 barriers to two nearby TBC conformers, forming two rings of connected states on the

two Mobius strips. Furthermore, the TBC conformers in the two rings are connected to

each other via TS3 (TC) transition states. Hence the BC and TBC conformers form a large

highly connected cluster of low energy states. In summary, the topology of the Klein bottle,

combined with the energy landscape, causes cyclooctane to heavily favor BC conformers

over Cr conformers.

IV. DISCUSSION

We have applied tools from the emerging fields of computational algebraic geometry

and topology, as well as non-linear dimension reduction, to better understand the energy

landscape of cyclooctane. Because cyclooctane is a relatively simple molecule, it has been

well studied for the past 40 years. Even so, the tools we used have yielded new insights. First,

it is surprising that the underlying conformation space is non-manifold. Although the space

was known to be an algebraic variety, it was not known that the variety had singularities.

Second, the existence of a non-orientable component (the Klein bottle) was not known and

not expected. To our knowledge this discovery is unique in the area of molecular motion.

In addition, the existence of the Klein bottle is not just a mathematical artifact. Instead,

its presence is intimately tied to the geometry of cyclooctane conformation, and together

with the energy landscape can be used to summarize and explain the molecular motion of

cyclooctane.

Although our findings have a certain intrinsic interest, we should ask how they influence

the standard view of energy landscapes and how they might affect typical algorithms used

in computational chemistry. To address these questions, we first note that the cyclooctane

conformations studied here were obtained using a rigid geometry (fixed bond lengths and an-
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gles). We might speculate that the structure we observed was an artifact of this assumption,

and that it might dissolve upon relaxing this constraint. The assertion that such structures

are not artificial is known as the rigid geometry hypothesis20,31, and is based on the observa-

tion that deformations of bond lengths and angles are up to two orders of magnitude stiffer

than deformations of torsion angles. As an example, our experience using Tinker did not

assume a rigid geometry, but our results supported the rigid geometry hypothesis, in that

the transition paths we found were near the constrained surface.

Next consider the existence of the intersection rings. We might imagine that the energy

gradient at a point on an intersection ring would preferentially push a cyclooctane confor-

mation onto one or the other of the sphere or Klein bottle. If this were the case we would

again conclude that the rings were an artifact. However, this is not the case. The TINKER

calculations demonstrate that canonical conformations on the sphere (e.g. the crown con-

formation) and the Klein bottle (e.g. the boat-chair conformation) are linked via low energy

transition pathways that pass through the vicinity of an intersection ring. We conjecture

that the intersection rings may contain higher-order saddle points, such that a given confor-

mation on a ring could fall towards a pole of the sphere, the equator of the sphere, or onto

the Klein bottle.

Given that such structures exist in cyclooctane conformation space, and probably ex-

ist for other molecules, we might ask what effect these structures would have on typical

algorithms from computational chemistry. On one hand, the existence of intersection sin-

gularities and non-orientable surfaces imply some amount of unrecognized complexity for

modeling molecular behavior. Do multiple sheets in conformation space imply special re-

quirements for sampling in Monte Carlo or Molecular Dynamics methods? Does it matter

that we are sampling from a non-orientable structure? On the other hand, the ability to

reduce dimension and provide a minimal representation is likely to improve results for many

algorithms, especially algorithms that are not focused specifically on energy minima. We

could, for example, use conformations obtained geometrically to seed certain methods, such

as elastic band and string type path searching algorithms.

Finally, there is nothing particularly unique about cyclooctane or the methods we used

in our analysis. Although our tools were specialized to 2D and algebraic double curves, the

general concepts apply to any number of singularities in arbitrary dimensions (albeit with

significantly increased computational complexity). In the future, these or similar tools might
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well be applied to increasingly complex molecules (such as proteins), yielding additional

interesting and unexpected results which would be difficult to otherwise obtain.
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FIGURE CAPTIONS

FIG. 1. Conformation space of cyclooctane. Here we show how the set of conformations of cyclooc-

tane can be represented as a surface in a high dimensional space. On the top row (a), we show

various conformations of cyclooctane. On the lower left (b), these conformations are represented

by the 3D coordinates of their atoms. The coordinates are concatenated into vectors and shown as

columns of a data matrix. As an example, the entry c1,1,x of the matrix denotes the x-coordinate

of the first carbon atom in the first molecule. On the lower right (c), the Isomap method is used

to obtain a lower dimensional visualization of the data.

FIG. 2. Local geometry and triangulation of cyclooctane data. In (a)-(c) we show the local non-

manifold geometry of the intersection rings in the cyclooctane conformation space. In (d) we show

our triangulation of the dataset. A neighborhood centered on a point in the upper ring is shown in

(a) using the Isomap coordinates; a PCA projection of this neighborhood from the original space

(R72) is shown in (b); the local characterization of this neighborhood as two intersecting planes is

shown in (c); and the triangulation obtained using an incremental surface reconstruction algorithm

modified to use our local algebraic decomposition is shown in (d).
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FIG. 3. Projections from torsion space. Here we show how the canonical crown-boat-chair basis

can be used to produce a fully reduced 2D representation of the cyclooctane conformation space.

The canonical conformations corresponding to the crown (cr), boat (b1,b2), and chair (c1, c2) are

shown in (a). The projection of the space onto (b1,b2, cr) is shown in (b), analytically reproducing

the results previously obtained using Isomap. We use green to represent the spherical component

(c) of the conformation space and blue/red to represent the Klein bottle component (e). The

intersection rings are shown using black. The spherical component (c) of the conformation space

can be reduced to 2D by varying the azimuthal angle (θ) between 0 and 2π in the (b1,b2) plane,

as shown in (d). The Klein bottle component can be reduced to 2D by decomposition into two

Möbius strips, apparent using (c1, θ, c2) coordinates (f), where θ again varies between 0 and 2π.

The Möbius strips in (f) are in fact helicoids, which can be parameterized using signed distances

r1 and r2 from the line c1 = c2 = 0. The signed distances can be used to reduce the two Möbius

strips to 2D (g,h). In (g) and (h), we show how the two Möbius strips can be glued together to

form the Klein bottle using labeled arrows to show equivalences (e.g. — A →). It is interesting to

note that representation of the Klein bottle in (b,e) has two deficiencies. First, the Möbius strips

have been folded over the intersection rings so that the hourglass shape actually consists of two

sheets, although it appears as one. Second, the apparent singularity at the origin is in fact an

artifact of the projection. In actuality, the Möbius strips are joined according to the equivalences

in (g,h), albeit using dimensions which are not visible in the (b1,b2, cr) coordinates.

FIG. 4. Hendrickson’s cyclooctane conformations. Here we show the positions of Hendrickson’s 10

conformations of cyclooctane in our reduced dimensional representation. Shown in (a) are six of

the conformations as they appear on the spherical (green) component of the conformation space,

including Cr, CC, TCC, B, BB, and TB, as well as our S and P conformations, corresponding to

the intersection ring energy minima (S) and maxima (P) seen in Figure 5. Shown in (b) are the C,

TC, BC, and TBC conformations occurring on the blue Möbius strip. Conformations on the red

Möbius strip are identically distributed. Shown in (c) are instances of the ten conformations, as

well as S and P.
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FIG. 5. Energy landscape for cyclooctane. Here we show Hendrickson’s 10 conformations and 4

known transition states for cyclooctane relative to the MM3 energy landscape using the param-

eterizations described in Figure 3. In (a) we plot (θ, cr,MM3 energy) for the spherical (green)

component of the cyclooctane conformation space. The intersection rings are shown using black

lines and Hendrickson’s conformations are labeled using circles. The circles are colored black if they

correspond to predicted energy minima16,28 or white otherwise. Transition pathways are shown in

brown between conformers. In (b) we show the energy landscape in (θ, r1,MM3 energy) coordinates

for the blue Möbius strip. In (c) we show the 4 transition states and pathways computed using

the EK algorithm in (b1,b2, cr) coordinates. Note that the transition states and pathways are

unconstrained (in terms of bond length/angle) and therefore lie near, but not on the constrained

surface described in Figure 3. In (d) we show a network of transition pathways with all of the

paths drawn from (a-c). The paths are colored according to the component (green or blue) that

contains each one, or using black lines for transition state pathways. A grey colored circle indi-

cates a transition state. In (e-h) we show transition pathway coordinates vs. MM3 energy for the 4

transition states and the closest corresponding paths on the constrained surface. The MM3 energy

ranges from 20-45 kcal/mol, and the same energy scale is used for each plot. It is interesting to

note that interconversions between the sphere and Klein bottle are less likely than interconversions

within the Klein bottle. In (e,h), for example, we see that the transition states are relatively high

energy, while in (f,g) the transition states are low energy. These differences are also reflected in

the constrained vs. unconstrained pathways: in (e,h), the transition states are significantly lower

in energy than the constrained saddle S, and in (f,g), the constrained vs. unconstrained paths are

not much different. (We also note that TB appears to be a minima using the constrained MM3

energy surface (h), but in reality this is not the case16,28.)
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