
Topology of Cyclooctane Energy Landscape:

Supplementary Material

Shawn Martin

April 16, 2010

Abstract

In Section 1, we give exact solutions in terms of torsion angle for five
canonical conformations of cyclooctane (crown, boat, and chair). These
conformations are derived using fixed bond angle, fixed bond length, and
methods from distance geometry. In Section 2, we show that the cyclooc-
tane conformation topology observed using torsion angles can also be seen
in ring puckering coordinates.

1 Canonical conformations

1.1 Distance geometry

We use the loop closure constraints derived from the distance geometry
model employed by Porta et al. [1]. In this model, we define the function

D(1, 2, 3, . . . , k) =

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

0 r1,2 r1,3 · · · r1,k 1
r2,1 0 r2,3 · · · r1,k 1
r3,1 r3,2 0 · · · r3,k 1
· · · · · · · · · · · · · · · 1
rk,1 rk,2 rk,3 · · · 0 1
1 1 1 · · · 1 0
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, (1)

where ri,j = ‖pi − pj‖2, and pi is the position of an atom embedded in
R

3. For cyclooctane, k = 8 (only ring atoms are considered).
Using D, we get a system of inequalities and equations which tell us

whether or not a given conformation can be realized. These necessary and
sufficient conditions are given by

D(1, 2) > 0, (2)

D(1, 2, 3) < 0, (3)

D(1, 2, 3, 4) > 0, (4)

and for every pair (i, j) with i, j = 5, . . . , k and i < j

D(R, i) = 0, (5)

D(R, j) = 0, (6)

D(R, i, j) = 0, (7)
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Figure S1: Variable definitions for cyclooctane conformation. We use pi for
points in R

3 representing ring atom positions, ti for torsion angles using a right-
handed system, and θb for the fixed bond angle.

where R is used to indicate indices 1, . . . , 4.

1.2 Distances from torsions

We use the distance model from Section 1.1 in combination with torsion
angles. We derive quantities c, f and g which give us distances as functions
of torsions. In deriving these quantities, we assume a constant bond angle
θb and a constant bond length of 1. Our labeling of points and torsions
are shown in Figure S1.

With these definitions, we obtain c2 = r1,3 = ‖p3 − p1‖2, or

c2 = 2(1 − cos θb) (8)

from the law of cosines. We next obtain f(t2) = r1,4 = ‖p4 − p1‖2, or

f(t2) = (1 − 2 cos θb)
2 + 2 sin2 θb(1 − cos t2). (9)
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Finally, we obtain g(t2, t3) = r1,5 = ‖p5 − p1‖2, or

g(t2, t3) =

„

c(1 − cos θb) − sin θb

q

1+cos θb

2
(cos t2 + cos t3)

«2

+ c2

4
sin2 θb(cos t3 − cos t2)

2

+ sin2 θb(sin t3 + sin t2)
2.

(10)

If we further assume that θb ∈ (0, π), we note that c
q

1+cos θb

2
= sin θb so

that

g(t2, t3) = c2(1 − cos θb)
2 − 2(1 − cos θb) sin2 θb(cos t2 + cos t3)

+ sin2 θb

“

1+cos θb

2

”

(cos t2 + cos t3)
2

+ c2

4
sin2 θb(cos t3 − cos t2)

2

+sin2 θb(sin t3 + sin t2)
2.

(11)
Using c, f and g, we see that D(1, ..., 8) from Equation (1) assumes

the general form
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0 1 c2 f2 g2,3 f7 c2 1 1
1 0 1 c2 f3 g3,4 f8 c2 1
c2 1 0 1 c2 f4 g4,5 f1 1
f2 c2 1 0 1 c2 f5 g5,6 1

g2,3 f3 c2 1 0 1 c2 f6 1
f7 g3,4 f4 c2 1 0 1 c2 1
c2 f8 g4,5 f5 c2 1 0 1 1
1 c2 f1 g5,6 f6 c2 1 0 1
1 1 1 1 1 1 1 1 0
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, (12)

for cyclooctane (k = 8), where fi denotes f(ti) and gi,j denotes g(ti, tj).

1.3 Canonical crown conformation

Suppose now that
t1 = t3 = t5 = t7,
t2 = t4 = t6 = t8,
t2 = −t1.

(13)

In this case we should obtain the canonical cyclooctane crown conforma-
tion. If we let u = t1 then

cr = (u,−u, u,−u, u,−u, u,−u)T . (14)

Using these constraints, we note that f(ti) = f(tj) = f(u) for all i, j
(since cosine is even) and g reduces to a function of a single variable

g(t) =

 

c(1 − cos θb) − 2 sin θb

r

1 + cos θb

2
cos t

!2

, (15)
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such that g(ti) = g(tj) for all i, j. The inequalities (2)-(4) are true in
general for θb, t2 6= 0,±π,±2π, . . . and D(1, . . . , 8) further reduces to
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0 1 c2 f g f c2 1 1
1 0 1 c2 f g f c2 1
c2 1 0 1 c2 f g f 1
f c2 1 0 1 c2 f g 1
g f c2 1 0 1 c2 f 1
f g f c2 1 0 1 c2 1
c2 f g f c2 1 0 1 1
1 c2 f g f c2 1 0 1
1 1 1 1 1 1 1 1 0
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, (16)

where f and g are now functions of the dihedral angle u.
We verified using the computer algebra system MuPAD (www.mathworks.com)

that equations (5)-(7) yield a unique solution such that

g = 2c2, (17)

c2g = f2 − 2f + 1. (18)

Solving (17) and (18) gives

cos(u) =
1 −

√
2 − cos θb

1 + cos θb
. (19)

1.4 Canonical boat conformation

For the canonical boat conformation, we assume

t1 = t3 = t5 = t7 = 0,
t2 = −t4 = t6 = −t8.

(20)

Letting v = t2 this gives us

b1 = (0, v, 0,−v, 0, v, 0,−v)T . (21)

The same value of v suffices for

b2 = (v, 0,−v, 0, v, 0,−v, 0)T . (22)

In this case, we obtain

f0 = f(0) = (c2 − 1)2 (23)

and

g(t) = (c(1 − cos θb) − sin θb

q

1+cos θb

2
(1 + cos t))2

+ c2

4
sin2 θb(1 − cos t)2 + sin2 θb sin2 t.

(24)

Thus D(1, . . . , 8) reduces to
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0 1 c2 f g f0 c2 1 1
1 0 1 c2 f0 g f c2 1
c2 1 0 1 c2 f g f0 1
f c2 1 0 1 c2 f0 g 1
g f0 c2 1 0 1 c2 f 1
f0 g f c2 1 0 1 c2 1
c2 f g f0 c2 1 0 1 1
1 c2 f0 g f c2 1 0 1
1 1 1 1 1 1 1 1 0
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, (25)
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where f and g are functions of v, and f0 = (c2 − 1)2 from (23). Now
equations (5)-(7) yield a unique solution such that

g = c2f − f − c4 + c2 + 1, (26)

f = 2c2 − 1. (27)

Solving (26) and (27) gives

cos(v) =
cos2 θb

sin2 θb

. (28)

1.5 Canonical chair conformation

Finally, we assume
t1 = −t3 = −t5 = t7,
t2 = t6 = 0,
t4 = −t8.

(29)

If we let ṽ = t1 and w = t4 we get the canonical chair conformation

c1 = (ṽ, 0,−ṽ, w,−ṽ, 0, ṽ,−w)T . (30)

We note that ṽ = v since the first three entries of c1 are in fact identical
to the first three entries of b2, and hence the corresponding distance
equations in (5) are identical. Thus we have

c1 = (v, 0,−v, w,−v, 0, v,−w)T , (31)

as well as
c2 = (v,−w, v, 0,−v, w,−v, 0)T . (32)

We now have f0 = f(0), fv = f(v), fw = f(w), gv = g(v, 0), and
gv,w = g(v,w). Using (11) we know that

g(v, w) = c2(1 − cos θb)
2 − 2(1 − cos θb) sin2 θb(cos v + cos w)

+ sin2 θb

“

1+cos θb

2

”

(cos v + cos w)2

+ c2

4
sin2 θb(cos v − cos w)2

+ sin2 θb(sin v − sin w)2.

(33)

In this case, D(1, . . . , 8) assumes the form
˛
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0 1 c2 f0 gv fv c2 1 1
1 0 1 c2 fv gv,w fw c2 1
c2 1 0 1 c2 fw gv,w fv 1
f0 c2 1 0 1 c2 fv gv 1
gv fv c2 1 0 1 c2 f0 1
fv gv,w fw c2 1 0 1 c2 1
c2 fw gv,w fv c2 1 0 1 1
1 c2 fv gv f0 c2 1 0 1
1 1 1 1 1 1 1 1 0

˛

˛
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˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

, (34)

According to the previous remark regarding ṽ = v, we can use (26)
and (27) to obtain

fv = 2c2 − 1 (35)

gv = c2fv − fv − c4 + c2 + 1 (36)
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Using (35) and (36) in (34) we obtain

gv,w = 1 + fw. (37)

Again using (34), the relation (37) yields

fw = 6c2 − c4 − 3 (38)

or

cos w =
3 cos2 θb − 1

sin2 θb

. (39)

2 Topology in puckering coordinates

2.1 Ring puckering coordinates

Cremer and Pople (1974) proposed a general coordinate system for quan-
tifying ring pucker [2]. This system is based on locating a mean plane
through the center of mass of a molecular ring and then computing the
vertical displacements of the ring atoms from that plane. The displace-
ments are used to compute puckering coordinates. Following Cremer and
Pople, we denote the ring atom coordinates by Rj = (Xj , Yj , Zj) for
j = 1, . . . , N , where N is the number of ring atoms. For cyclooctane,
N = 8. If we define

R
′ =

N
X

j=1

Rj sin(2π(j − 1)/N), (40)

R
′′ =

N
X

j=1

Rj cos(2π(j − 1)/N), (41)

then the vector

n =
R′ ×R′′

‖R′ ×R′′‖ (42)

gives the normal to the mean plane, and

zj = Rj · n (43)

give the displacements of the ring atoms from the mean plane. The ring
puckering coordinates are then given by

qm cos φm =

r

2

N

N
X

j=1

zj cos(2πm(j − 1)/N), (44)

qm sin φm =

r

2

N

N
X

j=1

zj sin(2πm(j − 1)/N), (45)

for m = 2, . . . , ⌊(N − 1)/2⌋ and

qN/2 =
1√
N

N
X

j=1

zj cos((j − 1)π), (46)

if N is even, where qN/2 can be either sign. For cyclooctane, we therefore
have 5 ring puckering coordinates: q2, q3, q4, φ2, φ3.
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Figure S2: Puckering coordinates for cyclooctane. Here we show how the ring
puckering coordinates can be used to visualize the topology of the cyclooctane
conformation space, in analogy with Figure 3 in the main text. The entire
space can be visualized using coordinates given by (q2 cosφ2, q2 sinφ2, q4), as
shown in (a). We use green to represent the spherical component (b) of the
conformation space and blue/red to represent the Klein bottle component (c).
The intersection rings are shown using black. The Klein bottle component can
be seen as two Möbius strips, apparent using (q3 cosφ3, q3 sinφ3, φ2) coordinates
(d), where φ2 varies between 0 and 2π.

2.2 Ring puckering for cyclooctane

In work by Evans and Boeyens (1988), ring puckering coordinates were
used to produce a map of the conformation space of cyclooctane [3]. This
map was found to be a sphere intersecting a torus. In our work, we discov-
ered a sphere intersecting a Klein bottle. It is our claim that Evans and
Boeyens slightly misinterpreted the puckering coordinate representation,
probably due to the fact that they were working with a very small sample
of cyclooctane conformations. To substantiate this claim, we show that
the cyclooctane topology observed using torsion angle (i.e. the sphere in-
tersecting the Klein bottle) is also seen using ring puckering coordinates.

Using the 6,040 conformation dataset described in the main text, we
computed the ring puckering coordinates for each conformation as de-
scribed in Section 2.1. We used the puckering coordinates to obtain the
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plots shown in Figure S2. The results are qualitatively identical to the re-
sults given in Figure 3 of the main text, thus supporting our claim. These
results are in fact so similar that we are led to speculate that additional
topological trends in cyclic alkanes (besides cyclooctane) might be easily
observed by further exploiting the generic nature of the ring puckering
coordinates.
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