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Abstract 
In this paper, we describe the methodology used by our group for the pose prediction task in the Drug Design Data 
Resource (D3R) Grand Challenge 4. We employed a template-based approach in which the initial placement of the 
ligand was based on the related structures in the Protein Data Bank. Since most of the targets in this round of D3R 
Grand Challenge were macrocyclic compounds, we used robotics-inspired BRIKARD algorithm to sample the 
conformations of the ligands. This was followed by filtering and several refinement protocols, including 
MELD-accelerated molecular dynamics and Monte Carlo on manifold minimization. The final ranking was 
performed semi-manually and was based on various scoring functions, clustering, and the similarity of the complex 
structure to known crystallographic complexes. Based on the assessment by D3R organizers, our approach was 
among the top-performing methods in the pose prediction challenge, both in cross-docking (1a) and self-docking 
(1b) stages. 

Introduction 
Over the last few years, our team has successfully participated [1, 2] in several rounds of the Drug Design Data 
Resource (D3R) community-wide blinded prediction challenge. Each round had a variety of tasks — prediction of 
poses, binding affinity, and free energy of small molecular compounds. In the last round, D3R 2019 Grand 
Challenge 4 (GC4), the participants were asked to predict poses and affinities for ligands of beta-secretase 1 
(BACE1), a protease implicated in the production of beta-amyloid peptides in patients with Alzheimer's disease [3]. 
We took part in the first two stages of GC4: 1a and 1b. Stage 1a included prediction of the binding poses of 20 
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ligands and provided the participants with nothing but protein sequence and ligand SMILES strings. Stage 1b also 
included a pose prediction task for the same 20 ligands, but this time the participants were given the corresponding 
receptor cocrystal structures with water molecules and, in some cases, sulfate ions and glycerol molecules, but 
without the target ligand. While the D3R GC4 also included affinity and free energy prediction stages, as a team 
with expertise in molecular docking and structure prediction we focused on the pose prediction sub-challenges. 
Previous rounds of D3R motivated us to develop new tools and modify existing protocols to satisfy the needs of the 
proposed tasks; GC4 was no exception. In this round, we used a combination of template modeling, inverse 
kinematics sampling [4], restrained local minimization (RM), Monte-Carlo energy minimization on the manifold 
(MCMM) [2, 5, 6], conventional molecular dynamics (MD), and MELD-accelerated molecular dynamics (MELD × 
MD) simulation [7, 8].  
BACE1 is a well-studied system, which, together with its sequence homologs, has several hundred crystallized 
structures deposited in PDB, many of which contain a bound small-molecule ligand. We collected and integrated the 
existing information on the bound compounds and used it throughout the whole pipeline: generation of initial poses, 
their refinement, and the final scoring. 
Most of the proposed compounds were cyclic molecules (19 out of 20), which makes sampling difficult since the 
loop closure condition must be satisfied. To overcome this issue we used the inverse kinematics approach designed 
to exhaustively sample compound conformations, satisfying multiple closure conditions at the same time [4].  
We sampled multiple structures for each target and then subjected them to preliminary filtering. The remaining 
structures were refined with several algorithms: full-atomic relaxation, Monte-Carlo on manifold minimization, 
conventional and accelerated MD. This pipeline resulted in very successful predictions with 0.76 Å average pose-1 
RMSD poses, and sub-angstrom accuracy for 15 out of 20 compounds according to the official evaluation by the 
D3R organizers. 

Methods 

Workflow overview 
For Stage 1a, the input data consisted of receptor sequence (as a FASTA string) and ligand structures (as SMILES 
strings). In total, 20 receptor-ligand pairs, or targets, were given, named BACE_1 to BACE_20. The BRIKARD 
algorithm [4] (for cyclic molecules BACE_1 to BACE_19) and the ETKDG [9] algorithm (for the only non-cyclic 
target, BACE_20) were used to generate multiple initial conformations for the ligands. The similarity search was 
performed in the PDB database to find templates — highly-homologous proteins with similar ligands. Out of all 
generated conformations, only those closest to the templates were retained. This way, for each target we created an 
ensemble of starting poses, containing between 4 and 402 structures. These structures were subjected to restrained 
full-atomic energy minimization (RM) to remove possible clashes and “relax” the ligand. Out of the resulting 
minimized poses, four to five were manually chosen for submission. 
For Stage 1b, the D3R organizers provided X-Ray structures of the receptor cocrystallized with each of the ligands. 
We aligned the submitted results from Stage 1a to these receptor molecules and applied various refinement 
protocols: restrained full-atomic minimization (RM), Monte Carlo on manifold minimization (MCMM), molecular 
dynamics (MD), and Modeling Employing Limited Data accelerated molecular dynamics (MELD × MD). For each 
target, five structures were manually selected for submission. 
The high-level overview of the workflow is presented in Fig. 1. 
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Fig. 1 The general outline of the protocol used by our team in D3R GC4. Yellow elements indicate the stages of the 
pipeline, the green ones indicate the data provided by the organizers, the blue ones indicate publicly-available 
databases, and the purple ones indicate the final submitted results. The MCMM, MD, and MD × MELD refinement 
stages were only used for refining with a cocrystallized receptor in Stage 1b and were skipped in Stage 1a 

Template search 
The first step of the protocol in Stage 1a was finding known structures of closely related complexes. We did a 
BLAST search for sequence-similar (e-value = 10-20, sequence identity >= 95%, resolution <= 3 Å) chain structures 
in the Protein Data Bank (PDB). Then, the following procedure was conducted independently for each of the 20 
target ligands. For each sequence-similar structure, only the ligand with the best Tanimoto score located within 8 Å 
of the sequence-similar chain structure was retained, with the two thus forming a protein-ligand template. Tanimoto 
score was calculated using Daylight molecular fingerprint with RDKit [10]. All templates with Tanimoto score less 
than two-thirds of the maximal Tanimoto score for the current target were discarded. The Maximum Common 
Substructure (MCS) was calculated between the target ligand and each of the remaining template ligands. For each 
target, two MCS were calculated using RDKit with different tolerance criteria: “weak” MCS (atoms and valences 
should be the same, allows chiral centers to be different, single and aromatic bonds to match each other) and “strict” 
MCS (allowances mentioned before are prohibited). Several templates with the highest MCS coverage for given 
target were taken as final. A special case was BACE_20, where we additionally constructed a “chimera” built from 
two templates. Each of these two templates covers a different part of BACE_20 ligand, with some intersection 
between them forming a common “core”. 

Starting poses preparation 
Despite the advancements of refinement protocols, having a good starting pose is still a prerequisite for achieving a 
low-RMSD result. For the initial stage of the competition (Stage 1a), the starting poses were prepared using the 
following multi-stage approach. First, we generated 104 conformers for each target ligand.  
For BACE_1-BACE_19 (macrocyclic molecules), conformer generation was carried out using the robotics-inspired 
BRIKARD [4] loop closure algorithm. Using inverse kinematics, BRIKARD rigorously samples “driver” torsions 
according to prescribed intervals and frequencies, while “driven” or “pivot” torsions [4] are computed by recursive 
ring closure consistently for all interconnected rings. This allows for uniform sampling of all dihedral angle values. 
BRIKARD allows manually specifying the order of solution of the rings in the system. However, for this study, we 
used ring perception algorithm [11] to carry out the recursive ring generation and find solutions automatically. 
For BACE_20 (non-macrocyclic molecule), we used ETKDG method [9] from RDKit for conformer generation. All 
conformers were minimized in vacuum using Merck Molecular Force Field (MMFF) [12, 13]. Then, for each 
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template (a protein-ligand pair from the template PDB structure), for both “weak” and “strict” MCS, all possible 
MCS mappings were generated, taking into account 1) all possible impositions of the MCS on the template ligand 
and 2) internal symmetry of the MCS itself. For each mapping generated this way, we aligned all conformers of the 
target ligand to the template ligand. For each template and for each “flavor” of MCS we retained only the conformer 
with the best MCS-mapping RMSD. The resulting structures were used as starting poses for the refinement. The 
number of starting poses per target varied from 4 (BACE_10 and BACE_15) to 402 (BACE_7), depending on the 
number of templates found and the number of generated MCS mappings between target and template atoms. 
In Stage 1b of the competition, we used our Stage 1a submissions as starting poses.  

Refinement 
In Stage 1a, the starting poses were subjected to a simplistic restrained energy minimization (RM), where harmonic 
restraints were pulling the ligand closer to the template. The RM results were scored and used for Stage 1a 
submission. 
In Stage 1b, we started from the ligand structures (4 or 5 per target) we had submitted in Stage 1a. We aligned them 
to the X-Ray structures of the receptor provided by the organizers. In this stage, we employed four different 
refinement protocols — restrained minimization (RM, same as in Stage 1a), Monte Carlo on manifold minimization 
(MCMM), conventional Molecular Dynamics (MD), and MELD-accelerated molecular dynamics (MELD × MD). 
The resulting structures from all refinement approaches were pooled together and scored for the Stage 1b 
submission. The details of refinement protocols are as follows. 

Restrained Minimization 

In both Stages 1a and 1b, we employed a straightforward restrained minimization protocol to refine the starting 
poses. The protocol was based on full-atom energy minimization using a CHARMM-based energy function with 
GBSA (ACE) solvation term, described in Ref. [14] and implemented in libmol2 library 
(https://bitbucket.org/bu-structure/libmol2/). In Stage 1b, an explicit hydrogen bonding term [15, 16] was added to 
the energy function. During the minimization procedure, all receptor atoms except hydrogens were fixed, while 
ligand atoms matching the template were restrained with a harmonic potential to the positions of the corresponding 
template atoms. Applying the restraints allowed us to overcome the limitations of the general forcefield, and 
implicitly harness the details of known BACE1-ligand interactions. Minimization was carried out using the L-BFGS 
algorithm [17]. Two variations of minimization protocol, which we term RM_1 and RM_2, were used for each 
target. 
RM_1 had three stages: (1) 500 steps without restraints to remove possible clashes; (2) 500 steps with harmonic 
restraints (10 kcal/mol/Å2) ; (3) 500 steps without restraints to allow the structure to settle in the pocket.  
RM_2 had five stages: (1) 500 steps of minimization with harmonic restraint (10 kcal/mol/Å2), but without van der 
Waals, electrostatic, and dihedral potentials to pull the target close to the template structure; (2) same as (1), but 
dihedral potential is enabled; (3) same as (2), but all the receptor atoms in the interface are movable; (4) same as (3), 
but electrostatics and van der Waals potential are enabled; (5) same as (4), but without restraints. RM_2 tends to 
allow more drastic changes to the ligand structure, making it closer to the template, but sometimes it results in 
unnaturally twisted dihedrals. 

Monte Carlo on Manifold Minimization 

The Monte Carlo on manifold minimization algorithm was based on the protocol described previously [1, 2, 6, 14, 
18]. MCMM relies on the assumption that covalent bonds and angles can be considered fixed, and thus the 
molecular flexibility is achieved through the rotation of dihedral angles alone. The molecule in this framework is 
described as a set of rigid molecular clusters connected by rotatable bonds. While full-atom minimization takes 
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place in a 3N-dimensional space, where N is the number of atoms, the manifold representation reduces this 
dimensionality to D+6, where D is the number of rotatable dihedrals, and 6 degrees of freedom are responsible for 
the rigid body movements of the molecule as a whole. Drastic reduction in the dimensionality of the problem allows 
significant speed-up [5]. 
In the current version of the protocol, we did not implement the rotations of the internal dihedrals of the cyclic part 
of the ligand, treating it as a single rigid cluster. However, since the cyclic part was sampled during the conformers 
generation, its flexibility was partially accounted for during the selection of starting poses and the following 
full-atom RM refinement. During the minimization procedure, we used the same energy function as for the RM 
refinement, including harmonic restraints [15, 16]. For each starting conformation, we performed 10,000 Monte 
Carlo steps (kT=2.0 kcal/mol), from which the pose with the lowest energy was selected, and additionally 
minimized without restraints. The MMCM approach was used only in Stage 1b. 

Molecular Dynamics 

This refinement procedure, used only in Stage 1b, was reserved for targets for which templates were similar to each 
other, suggesting a high degree of certainty in the starting model. The starting configuration for the refinement MD 
simulations was the top-1 pose from our Stage 1a submission, according to our ranking. We used Amber ff14SB 
force field [19] to model the protein, and the GAFF force field [20] to model the ligand. The protonation state of the 
ligand was determined based on the experimental conditions provided by the organizers. Ligand atom partial 
charges were assigned using the AM1-BCC method [21] implemented in the antechamber module of Amber [22]. 
Each structure (this includes protein, ligand, crystallographic water molecules, and, in some cases, sulfate ions and 
glycerol molecules) was solvated using Leap [17] with a TIP3P [23] octahedral water box and at least a 10 Å buffer 
region between any atom of the system and the edge of the box. Na+ or Cl− ions were added as needed in order to 
neutralize the total charge of the system [24]. 
The MD refinement procedure is similar to the one described in Ref. [2]. For each system, first, a multistage 
minimization and equilibration protocol is carried for 2.05 ns [25]. Then, an MD production run is carried for 200 ns 
with 4.0 fs timestep, at 300 K and 1 atm. Hard restraints (50 kcal/mol/Å2) were applied to protein heavy atoms, 
sulfate ions, and glycerol molecules; crystallographic waters were restrained with stronger springs, k=100 
kcal/mol/Å2. Soft restraints (2.5 kcal/mol/Å2) were used for the ligand. This kept the protein close to the 
crystallographic structure while allowing some degree of relaxation for the side-chains and the ligand.  

MELD-accelerated Molecular Dynamics 

This refinement procedure was used only in those Stage 1b cases where the chosen templates were significantly 
different from each other. MELD-accelerated MD (MELD × MD) uses external information to reduce the phase 
space of physics-based simulations [7, 8]. This is achieved by energetically penalizing the regions of the phase space 
that do not agree with the information. Since no energetic bias is applied to areas of the phase space that agree with 
external information, the relative population of these basins is consistent with the relative population of unbiased 
simulations and can, therefore, be used as a proxy for free energy. In order to jump between the different basins 
created by the introduction of the information, energy-bias replica exchange simulations are necessary. For each 
MELD × MD refinement target, structure information of all five starting poses was incorporated into the simulation 
in two ways: 

1. Ligand heavy atoms positions shared by all the poses were restrained using MELD cartesian restraints 
(delta=1 Å, k=5 kcal/mol/Å2). Other ligand atoms were left unrestrained. Visual inspection was used to 
identify which ligand heavy atoms are shared between all the poses (and therefore are restrained during the 
MELD × MD simulation).  

2. Protein and crystallographic water heavy atoms were restrained using hard MELD cartesian restraints 
(delta=0.5 Å, k=5 kcal/mol/Å2). 
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To reduce the convergence time of simulations, the five starting poses were seeded along the replica ladder. To 
further reduce the simulation time, only part of the receptor was simulated in MELD. This part was selected by 
searching for receptor residues, cofactors, or crystal waters having a heavy atom within 10 Å from the ligand. The 
system was subjected to the same minimization and equilibration protocol as in the MD protocol before refining 
with MELD. The MELD simulation was run in TIP3P explicit solvent environment with REST2 solute-tempering 
technique [26]. The effective temperature was scaled from 300 K to 400 K with MELD Geometric Temperature 
Scaler. Hydrogen mass repartition was applied. The simulation time step was 4.5 fs. An 8 Å cut-off was used for all 
interactions.  
 
Clustering Protocol 
The following procedure was used to analyze the MD and MELD trajectories. The trajectories were clustered 
without using any information about starting poses, and the cluster centroids were chosen as final predictions. In the 
case of MD refinements, the trajectories (one per target) were clustered using the whole 200 ns of trajectory. In the 
case of MELD simulations, only trajectories of the three lowest replicas were clustered. We used the DBSCAN 
clustering algorithm [27] implemented in scikit-learn [28]. The distance cut-off was 5.0 Å and the population cut-off 
for identifying core points was 20. The distance metric used was the ligand RMSD (LRMSD) computed on all 
ligand heavy atoms after aligning the receptor Cα’s.  

Scoring and ranking 
For each target, the results of all refinement methods (RM for Stage 1a; RM, MCMM, MD, and MELD for Stage 
1b) were combined in a single pool and scored together. The results were clustered using the Butina algorithm [29] 
from RDKit. For each obtained cluster centroid, AutoDock Vina-based score [30], CHARMM-based energy score, 
and cluster size were calculated. The final model selection was done manually based on these scores and the fit of 
the model to known crystallographic ligands binding to the same pocket. 

Results and discussion 
In the analysis of the results below, we used native crystallographic poses provided by the organizers as a reference 
for RMSD calculation. A custom comparison tool was used, which caused minor discrepancies between the RMSD 
values reported here and in the official D3R GC4 rankings.  

Macrocycle sampling 
One of the main challenges of the current D3R round was a conformational sampling of 19 macrocyclic target 
ligands (BACE_1-BACE_19). Their main ring contained 14 to 16 atoms, one (BACE_8-BACE_10, 
BACE_12-BACE_19) or two (BACE_1-BACE_7, BACE_11) peptide bonds, up to two fused planar aromatic 
benzene rings and has up to three flexible sidechains. Besides that, in two target ligands (BACE_2 and BACE_13) 
one of the sidechains additionally included independent flexible hex-ring. 
 
Although it is important to have an overall good conformer as a refinement starting point, we wanted to focus most 
of our efforts on a conformational sampling of the main rings of the target molecules. The main reason to do so is 
the relative complexity (because of the loop-closure condition) of the conformational space and energy landscape of 
the macrocyclic parts wrt sidechain parts. Unlike the macrocyclic parts, the sidechains can be efficiently additionally 
sampled with the refinement protocols that we have, thus increasing the value of conformational sampling success 
for macrocyclic parts. 
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We compared two conformer generators, ETKDG from RDKit [10] and BRIKARD [4] to determine their 
effectiveness for sampling macrocycles. Specifically, we generated conformers using both tools, minimized105  
them in vacuum using Merck Molecular Force Field (MMFF), and calculated RMSDs to the native structures only 
for macrocyclic parts (all atoms rigidly attached to the main ring) of the molecules (macrocyclic RMSD). 

 
Fig. 1 Left: Comparison of the best macrocyclic RMSD generated by ETKDG MMFF or BRIKARD MMFF for 
each macrocyclic target ligand (BACE_1-19). Right: Native structures of the macrocyclic target ligands. Green 
structures (BACE_2-BACE_5, BACE_11) have two peptide bonds (one of them has methyl nitrogen-sidechain), 
orange structures (BACE_1, BACE_6-7) have two peptide bonds (one of them has massive and flexible 
nitrogen-sidechain), blue structures (BACE_8-10, BACE_12-19) has one peptide bond. The color of the points on 
the left corresponds to the carbon-color of the structures on the right. 
 
The result of the comparison is presented in Fig. 1, where we have divided all macrocyclic target ligands into 3 
colored subgroups based on the number and type of peptide bonds within the macrocycle. These peptide bonds 
significantly complicate the sampling of macrocycles by introducing energetic barriers in addition to the already 
nontrivial energy landscape of macrocycles. The blue group macrocycles have only one plain peptide bond in trans 
native conformation. The orange group has an additional peptide bond in cis native conformation with massive and 
flexible nitrogen-sidechain. This sidechain prevents the second peptide bond from being in trans conformation 
because of possible steric clashes with the macrocycle itself, thus simplifying the sampling problem. In terms of best 
macrocyclic RMSD performance of both ETKDG MMFF and BRIKARD MMFF for both subgroups of 
macrocycles mentioned before is comparable (see Fig. 1). 
 
A significantly different situation is for the green subgroup macrocycles, which also contain second peptide bonds 
but with methyl nitrogen-sidechain and in trans native conformation (Fig. 1). For these peptide bonds, we found that 
the structures produced by ETKDG highly over-represented cis conformation. The distribution of the dihedral angle 
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(highlighted in Fig. 2a) is shown in Fig. 2b, with most of the samples being in a near-cis state. We attribute it to the 
relaxation associated with loop closure via fragment assembly, employed by ETKDG, so the sampling 
exhaustiveness is sacrificed in favor of a loop-closure condition satisfaction. After MMFF minimization, almost all 
generated conformers were in a cis state with trans state being undersampled. In Fig. 2c we can see that the 
inverse-kinematic approach of BRIKARD allows broad uniform sampling of all dihedral rotations. After performing 
MMFF minimization, both cis and trans states are populated. 
 

 
Fig. 2 (a) Left: Structure of one of the submitted BACE_2 ligand poses. One of the peptide bond dihedrals is 
highlighted. Right: Three of the alternative structures for BACE_2 sampled by BRIKARD. (b) The distribution of 
the peptide bond dihedral in structures generated by ETKDG, before (white bars) and after (blue bars) MMFF 
energy minimization. (c) The distribution of the peptide bond dihedral in structures generated by BRIKARD in 
broad sampling mode, before (white bars) and after (blue bars) MMFF energy minimization. 
 
We believe that for even more complex macrocyclic systems with multiple dihedral barriers and multiple rings 
fusion the ability of BRIKARD to uniformly sample all pivot macrocyclic dihedrals intrinsically taking into account 
multiple loops closure condition is of high significance and helps to improve results as for example was 
demonstrated in [4].  
 
We’re planning to make BRIKARD publicly available as an automated server. Users will be able to upload the 
starting cyclic structure or amino acid sequence (in case of peptidic macrocycle) and specify the desired number of 
conformers (up to 105). Users will also be able to minimize the energy of each generated conformation, optionally 
including distance restraints derived from NMR spectrum or using direct optimization of 2D NMR spectrum 
(NOESY). After the job is completed, the user will be able to download all the sampled minimized/non-minimized 
conformers or only the cluster representatives. 
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Restrained Minimization 
Despite its simplicity, the restrained minimization protocol did significantly improve starting poses in Stage 1a. The 
results can be seen in Fig. 3, where we show the RMSD values for the best-refined pose (with the lowest RMSD to 
reported native structure) and the corresponding starting pose. While in all cases except BACE_12 starting pose has 
RMSD over 1 Å, in most cases energy-based RM succeeds in lowering it into the sub-angstrom range. 

 
Fig. 3 Comparison of RM refinement results and starting conformation. The RMSD of the best RM refined pose 
(green bar) and the corresponding starting pose (white boxes) against the native pose 
 
As expected for a template-based method, the accuracy of refined structure tends to improve with higher template 
similarity. This effect can be seen in Fig. 4, where we compare RMSD for the best (lowest RMSD) Stage 1a 
predictions versus corresponding MCS coverages. Filled markers correspond to the refined structures, while empty 
markers with the same MCS coverages correspond to the starting structures. We also visually separated “weak” 
MCS (shown as circles) and “strict” MCS (shown as squares). We see that finding a good template, with high MCS 
coverage, is an important step for obtaining high-quality models with the protocol used. 
Insets (a) and (b) in Fig. 4 showcase two examples of refinement achieved by the RM approach, for targets BACE_6 
and BACE_11, respectively. In the case of BACE_6 (inset a), significant changes in both “tail” and macrocycle are 
observed, leading to RMSD reduction from 2.10 Å to 0.83 Å. In the case of BACE_11 (inset b), the tail is relatively 
constant, but a ring flip happens in the macrocyclic part, reducing RMSD from 1.61 Å to 0.49 Å. 
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Fig. 4 The dependency between obtained RMSD and corresponding MCS coverage. For each of 20 target ligands, 
two points are shown: a filled one for the best (lowest RMSD) RM-refined pose, and an empty one for the 
corresponding starting pose. The shape of a point indicates used MCS “flavor”: square for “strict”, and circle for 
“weak”. Inset (a) shows an example of RM refinement for BACE_6, while inset (b) shows RM refinement for 
BACE_11. In both cases, the native structure is shown in red, the starting structure in gray, and the RM-refined 
structure in green 
 
Since the starting poses were built by aligning conformer to the template without taking into account the pocket 
environment, clashes between the small molecule and protein could occur. One of the structures for BACE_18 
might serve as an example of such a situation, as shown in Fig. 5. The clash between a protein loop and starting 
macrocycle pose was resolved by RM, reducing RMSD from 4.10 Å to 1.80 Å. 
 

 
Fig. 5. Example of macrocycle refinement with RM protocol for target BACE_18. Starting pose, obtained by rigid 
alignment of sampled structure to the template, is shown in gray. The native pose and RM refined pose are shown in 
red and green, respectively. Receptor backbone in native structure is shown in red and is very similar to the 
backbone in the refined and starting structures 

Monte Carlo on Manifold Minimization 
While RM refinement could perform a significant conformational change, it was limited to exploring only local 
minima. Although perturbations on manifold didn’t affect macrocycle, they did extensively sample side-chains, and 
subsequent full-atom relaxation led to adjustments of the macrocycle structure as well. For example, Fig. 6 shows 
the comparison of MCMM and RM refinement for BACE_1 ligand in Stage 1b of the competition. While RM 
reduced RMSD from 1.20 Å (starting pose, shown in gray licorice) to 0.94 Å (green licorice), it failed to establish 
hydrogen bonds with nearby water molecules, despite hydrogen-bonding terms being included in the forcefield. 
MCMM, on the other hand, sampled ligand side-chains enough to find the conformation (teal licorice) with these 
hydrogen bonds, reducing RMSD to 0.64 Å. 

 
Fig. 6 Comparison of MCMM refinement result (teal) and RM refinement result (green) for BACE_1 in the 
presence of crystallographic water. Starting pose is shown in gray; native pose, including receptor and water 
oxygens, is shown in red. Two hydrogen bonds, formed by native and MCMM-refined poses, and not formed by 
starting and RM-refined poses, are shown as yellow dashed lines 
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However, extensive conformational sampling combined with general forcefield often led to suboptimal results, and 
MCMM outperformed RM, in terms of best RMSD, only on 6 targets. 

Molecular Dynamics 
During the competition, conventional MD refinement was not used for systems BACE_8,9,17,18,19,20. However, to 
make the discussion of the results more complete, the MD refinement protocol was run afterward for the 
MELD-refined systems as well. We can see that using MD we can slightly refine (most) poses. 
Fig. 7 shows the quality of the initial structures (i.e., the top-1 structure from Stage 1a submission), and how 
restrained MD can improve the structure of 14 systems. Of these, BACE_2,6,7,10,17,20 have improvement of 0.2 Å 
or more. Only in two cases (BACE_14 and BACE_17) of the seven remaining systems the quality of the refined 
structure is slightly worse than the starting structures. This shows that, in most cases, restrained MD simulations can 
slightly improve the quality of good starting structures. Since the positions of the heavy atoms of the ligand are 
restrained, the final structures of our simulations can not deviate significantly from the initial ones. Improvement 
using this approach are therefore limited to fractions of angstrom. This is still a helpful step for systems where there 
is a consensus between starting poses since it “relaxes” the physics of the system.  

 
Fig. 7 Comparison of MD refinement results and starting conformation. The RMSD of the best MD refined pose 
(blue bars) and the starting pose (white boxes) against native poses 

MELD-accelerated Molecular Dynamics 
During Stage 1b of the competition, MELD was run only for targets where starting poses had relatively different 
structures, namely BACE_8,9,12,17,18,19,20. In these cases, MELD × MD is able to recognize the best structure 
and refine it. Fig. 8 shows that, for the seven systems for which alternative poses are available, MELD × MD 
simulations allow to consistently identify and refine the best pose. For two of the systems, BACE_8 and BACE_9, 
the top-1 starting pose is already pretty close to native. MELD correctly identifies it and refines it. I.e., both MD 
refinement and MELD refinement yield poses that are similar to each other and the top-1 starting structure. For 
BACE_17, the top-1 pose (gray licorice in the structural representation) is not the correct one. MELD × MD 
correctly identifies and refines the correct pose (orange licorice). In this case, MD is also able to relax the incorrect 
top-1 pose to one closer (blue licorice) to the native one (red licorice), since we leave that portion of the ligand 
unrestrained. For the BACE_19 system, the ring in the top-1 pose is flipped (gray licorice) compared to the native 
pose (red licorice). MD is not able to relax its orientation (blue licorice). MELD is able to identify the pose with the 
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correct ring orientation and refine it (orange licorice). For BACE_18, MELD gives slightly worse pose compared to 
MD. Visualizing the whole trajectory shows that MELD does sample better poses, but the clustering protocol fails to 
extract them (Fig. S1). Clustering with a more strict cut-off might yield better poses. 
 

 
Fig. 8 Comparison of MELD refinement results, MD refinement results, and top-1 starting conformations. The best 
MELD refined pose, best MD refined pose, and top-1 starting pose are shown in orange bars, blue bars, and white 
boxes, respectively. The corresponding structures for BACE_17 and BACE_19 are shown above the bars in the 
same colors; the native structure is shown in red 

Summary 
Template search and restrained minimization were enough to achieve low-RMSD scores in Stage 1a of D3R GC4. 
As evaluated by the organizers, our mean closest RMSD (best of five for each target) value was 0.65 Å, with 18 
targets having a sub-angstrom accuracy, and our mean pose-1 RMSD was 0.77±0.34 Å, with 15 targets in 
sub-angstrom range (Fig. 9a). This placed our group first in official Stage 1a rankings by both mean closest and 
mean pose-1 RMSD (Fig. 10a).  
In Stage 1b, with receptor crystallographic structures and a higher number of refinement protocols, the accuracy was 
further improved. MCMM, MD, and MELD refinement protocols were used to refine the ligand starting 
conformation, other than strongly perturb it, which often resulted in drastic RMSD improvements. Unfortunately, 
due to technical issues, we were unable to analyze and submit all refinement results in the time allotted. Therefore, 
not all of the discussed results were included in the official submission, and the overall improvement was marginal 
compared to Stage 1a. Still, for some targets, we did improve RMSD drastically. E.g., closest RMSD for BACE_20 
was 0.97 Å in Stage 1a, and 0.65 Å in Stage 1b submission. According to the official evaluation, we achieved mean 
closest RMSD 0.63 Å, and mean pose-1 RMSD 0.76±0.32 Å (Fig. 9b). Among all participants, we were ranked 
second in terms of mean closest RMSD, and third in terms of mean pose-1 RMSD (Fig. 10b). 
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Fig. 9 The closest RMSD (bars) and pose-1 RMSD (diamonds) of submitted structures in Stages 1a (subfigure a, 
left) and 1b (subfigure b, right), as calculated by the D3R GC4 organizers 
 
 

 
Fig. 10 The top-30 predictors by mean closest RMSD (bars) in official D3R GC4 rankings. Corresponding mean 
pose-1 RMSD’s with standard deviations are shown as diamonds with whiskers above the bars. Results for Stage 1a 
are shown in subfigure a (left); results for Stage 1b are shown in subfigure b (right). The scores or our group are 
shown as hatched bars 

Conclusion 
Template-based approach has been used in previous rounds of D3R Grand Challenge for protein-ligand docking 
[31–33], as well as in community-wide protein-protein docking competitions [34–37], and for protein-RNA docking 
[38, 39]. 
Our team has developed a novel approach for template-based small molecular docking and demonstrated its 
efficiency in D3R GC4, where we predicted the poses of 20 compounds with 0.76 Å mean pose-1 RMSD and 0.66 
Å mean closest (best of five) RMSD. In terms of pose-1, 15 out of 20 compounds were predicted with sub-angstrom 
accuracy. This has placed us among the best performers in the pose prediction challenge.  
In the approach, we incorporated ample existing information on the bound ligands for the system of interest and the 
tools previously developed by us. Armed with this data, we were able to produce low-RMSD poses even with a 
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simplistic local refinement method. More advanced structure refinement protocols were able to reduce RMSD even 
further in Stage 1b, although no single method is clearly superior to others.  
Besides, while in many cases sampling and refinement steps produced very high-quality structures, they were not 
chosen for submission, indicating that the scoring and ranking protocol has room for improvement. In particular, a 
better scoring function would be crucial for ranking the obtained poses. While, for example, the Vina scores did not 
show a high correlation with RMSD even within multiple poses of the same ligand (see Supplementary Fig. S2), we 
believe that an automated scoring method can be devised instead of relying on human experts as we did in this 
competition. Of particular interest are knowledge-based scoring functions due to their good performance in D3R 
ranking stages in this and previous years [40–43]. Another possible direction for scoring function optimization is the 
inclusion of a density-based score, which measures the similarity of the structure to known crystallographic 
complexes of related compounds. 
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Supplementary Material 

 
Fig. S1 LRMSD of MELD trajectory for BACE_18. The LRMSDs of all poses sampled during MELD simulation 
and the final best MELD refined pose are depicted as blue dots and a red line, respectively. MELD samples poses 
closer to native, but the current clustering protocol fails to extract them 
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