Governing Equations and the Problem Statement

Computational fluid dynamics requires an observance of conservation of
mass, conservation of momentum, and energy balance. The flow under inves-
tigation is 2D, viscid, and incompressible. Experiments for this type of flow
have been conducted over several decades, and the analysis has produced
a rich field of nonlinear dynamics. The 2D geometry for this problem is a
rotating disk having a large aspect ratio. The geometry of the disk is:

The aspect ratio is defined asI' = % with 7 < T'" < 20.

For this problem, the fluid inside the radius a is rotating as though it
were a rigid body. The fluid outside radius a is not moving at all. Thus a
shear layer develops at a where the difference in velocity is realized. The
dynamics of interest for this study occur at the shear layer.

To model the flow we start with conservation of mass. Since the fluid is
incompressible, there is no divergence in the flow (no sources or sinks). This
assumption simplifies the mass equation to divergence free. The Navier-
Stokes’ equations (conservation of momentum) retain their viscosity terms
but are simplified due to the 2D nature of the flow. The resulting equations
for this problem are:
conservation of mass (CM): V-u =0
conservation of momentum (CMO): dyu + u - Vu = —% + vAu + vd%u

u is velocity

Pis pressure

p is density

v is kinematic viscosity

h is the cell height of the 2D disk

u* is initial velocity

The last term in the CMO is a vertical component that is modeled in
this problem using an Ekman spiral. The Ekman spiral results from the
friction on the top and bottom of the 2D disk. When the disk rotates, fluid
is transported vertically through the Ekman layer. Due to the low height of
the disk, vertical flow is negligible and the effect is accurately modeled with
the Ekman friction in lieu of the vertical gradient.

Two tools are available to help simplify the above equations and rewrite
them in a more appealing form. The first is the stream-function resulting
from the 2D nature of the flow.



The stream-function, v, can be used to give an alternate definition for the
velocity, u = Opv0é, — 0,1éy. The second tool is the definition for vorticity,
w =V X u. These adjustments in combination with the Ekman friction give
the final form for the CM and CMO equations:

CM: AY = —w

CMO: dw + J (w, 1) = vAw + % (w* — w)

J is the Jacobian - J(w,v) = £(d,wdst) — 0,Opw)

These equations are referred to as the stream-function/vorticity (S/V)
formulation of the Navier-Stokes’ equation with Ekman friction.

Flow is modeled using a Chebyshev-Fourier (C-F) expansion. In the
radial direction the flow is modeled with Chebyshev polynomials while in
the azimuthal direction it is modeled with a Fourier expansion. Thus the
stream-function and vorticity are modeled in the following way (this is the
stream-function expansion):

N M
W(r,0) =3 YunTn(r)e™ —1<r<1 0<6<2r

n=0m=0

T, (r) is the m*™ Chebyshev polynomial

Ynm is the stream-function coefficient for the n'" Fourier mode and the
th

m

Chebyshev mode

Note the Fourier modes are 0 — N and the Chebyshev modes are 0 — M.
Also, the disk is covered twice in this expansion. With —1 < r < 1 instead
of 0 < r < 1 each point on the disk is the same at (r,6) and (—r,6 + 7).
This double covering builds some regularity into the solution. Consider a
function ((r,0) = f(r)e™’. Then we know f(r)ei™® = f(—r)e™¥*™) and this
simplifies to f(r) = (—1)"f(—r). The result means ((r,f) is even for even
Fourier modes, n, and is odd for odd Fourier modes.

Stability Analysis of the Homogeneous Flow

The homogeneous analysis is characterized via the fact that the flow has
no variations in the € direction. This means the problem can be decoupled
in the Fourier expansion so as to consider only a single Fourier mode when
applying a perturbation to the problem. Furthermore, the bifurcations are
determined for steady flow after equilibrium has been reached. To analyze



this problem the S/V equations are made dimensionless, and the resulting
equations are:

Ow + J(w, ) = é[Aw + (@ — w)] and Ay = —w.

Re is the Reynolds number, Re = %

Q) is the angular velocity of the rigidly rotating flow inside radius a

B is the characteristic length scale

@* is the dimensionless, initial vorticity field

Next consider the steady state problem and expand the Laplacian oper-

ator as A = 02 4+ 20, + -303. The resulting system of equations is:
L(Orwdyp — 0,90pw) = 2= (02w + Lo,w + 20w + H(@* —w)) (1)

R+ Loy + L0 = —w (2)

Once the system is determined, we apply a perturbation. This pertur-
bation is an adjustment to the homogeneous flow and is linear in nature.
The homogeneous flow is given be 1)y and wy as the initial stream-function
and vorticity, respectively. These quantities vary only in the radial direction
and the perturbation is also considered in the radial direction. Using the
azimuthal independence of the flow, each Fourier mode is considered inde-
pendently. The linear asymptotic expansion of the flow yields the appropriate
perturbation. Thus the resulting homogeneous flow and perturbation have
the form:

w = wp(r) + ew; (r)eM+ ™ and 1 = y(r) + ety (r)eM Y

n is the number of the Fourier mode

A is the eigenvalues for the n'® mode

After allowing the substitution of v = At+inf, the asymptotic expansions
are substituted into equations (1) and (2). The time dependency of the
perturbation modifies equation (1) to include the time dependent term, dyw.
The resulting system is:

ewi AT + L (Bywo(einypre”) — Byabo(cinwie?)) =
= (87%)0 + e02wie” + L(Orwo + edrwie”) — Henwie? + (@ — wpy — awle"’))
(3)
83% + 8872.1/1167 + %(arw() + 687-1/1167) - T%srﬁwle”’ = —wy — ewe” (4)
From this point, the system is divided into 2 parts. The order one, O(1),
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terms are grouped separately from the order epsilon, O(g), terms. The O(1)
system provides information about the homogeneous flow without perturba-
tions. The initial vorticity is used to determine the homogeneous stream-
function and vorticity, 19 and wy. These equations are:

83&)0 + %@wo — %wo = —%(Z)* and agw() + %&wo = —Wy (5)

The O(g) equations pertain to the linear perturbation of the homogeneous
problem. The equations can be solved to give the eigenvalues for various
Reynold’s numbers. A positive eigenvalue corresponds to an instability in
the homogeneous flow. The O(e) system is:

Wi+ %"(lbﬁrwo — w10,) = ﬁ(@?wl + %&wl - Z_zwl - /%wl)

2 4
Oty + 1edpipy — ohy = —wy (4)

Using the results from solving system (5), the solution for system (4)
can be found through the formulation of a generalized eigenvalue (G/Eig)
problem. Looking at (4) the terms 0,wy and 0,1y are needed to solve the
problem. Thus (5) is differentiated with respect to (w.r.t.) r in order to solve
for these terms directly. Applying 8, to (5) gives:

(83 + %87« — TLQ - %)&wo = —%8,&)* and (83 + %87- - r%)arw() = —0OrWyp (7)

To solve systems (4) and (7) we use a similar approach. Initially, to re-
move the singularities multiply the equations by r2. Next recall the functions
wp, Yo, w1, and 1y are functions of  only and thus have only Chebyshev ex-
pansions (the Fourier expansion has been considered term by term though

mode n). Each function has an expansion in Chebyshev polynomials e.g.

T T
wOEI:WOO Wo, - wOM] ;1/)15[1/)10 ¢11 1/}1M] , etc. Thejth
entry in the vector is the coefficient for the j'" Chebyshev polynomial, namely
T;(r). Thus the functions can be represented as vectors in the Chebyshev
basis, and multiplication by r and differentiation by r can be represented as
matrices. The appropriate matrices are given here:

[0 2 0 0 07
1035 0 O
R=[0 ;0 0 | for multiplication by r
00 " 1
000 L o0




010305 --- M

004080 .0

0006 010 - 2M

D= 000080 0 for differentiation by r

00 0O0O0T10 - 2M

0 000O0O0O .0

0o000O0O0O ™. 2M

000O0O0OO0O O O

The R matrix is formed using convolution techniques described below.
The D matrix results from the following Chebyshev recurrence relation:

T =n <2Tn1 + z”";) starting with 7; = 0 and 7] =1

T,, is the n'® Chebyshev polynomial

Applying the multiplication by r? and changing to the vector representa-
tion of the functions gives the following system for (7):

(R?D? + RD — I — $R*)d,w) = — SR29,&" 5)
(R2D? + RD — 1)d,¢ = —R?,w

System (5) consist of a set of coupled equations and is straight forward
to solve since 0,&* is a given function. Solutions to (5) are the vectors 9,wy
and 0,19. These vectors are used to solve the O(¢) G/Eig problem.

At this point apply the multiplication by r? and change to vector repre-
sentation of the functions to system (4). One requirement for changing to
vector representation is the implementation of convolution matrices for point
space multiplication. The terms v 0,wy and w;0,1y are multiplied in point
space, and these expressions require a convolution when written in terms of
Chebyshev polynomials. The convolution is written as a matrix vector prod-
uct. Since wy and 1y are unknowns, they are left as vectors. This implies the
Orwo and 0,1y vectors need to be written as matrices. The resulting matrices

are referred to as Chebyshev convolution matrices (C-conmtx). The R matrix
T
used previously is actually a C-conmtx for the vector [ 010 ---0

In general a C-conmtx is built using the Chebyshev recurrence relation:

1Ty = %(Tn—l—m + ZZ—7|n—m|)

To match the above recurrence relation, each 7} is written as a matrix
Tji



0

O Nk O e

N O

O Nl

0

O o= O

1
2

O o= O

0

O o= O

0

—jth41row

In general the convolution of 2 Chebyshev vectors and is accomplished in

the following manner:

* = Ej”i 0 9;T; where each T; is a matrix vector multiplication.

Let arwoz[(so 51 Oy

T
On ] then the convolution for 0,wy is given

by the following matrix: m = 5()T0 + 51T1 —+ -+ (SMTM

**Note due to the positive slope diagonal in each T, matrix, the repre-
sentation 0,wg = 6T+ 0, T1 + - -+ + 0T is only accurate for the 0 — %
Chebyshev modes. Matrices larger than % +1x %—1—1 are missing meaningful
data contributed by the M + 1 and higher modes. This means an M mode
accurate C-conmtx requires 2M modes of data within the vector.



Making the adjustments to system (4) yields:

R2w1)\ + ’L'nR(arW(ﬂ/ll — &wowl) = é(RQDQ(ﬂl + Rle — n21w1 — %R%}l)
R2D2’ll)1 + RD@/Jl - n211/11 = —R2w1
(6)

z is the C-conmtx for the vector (
Finally the system (6) is ready to rewrite as a G/Eig problem. The

form of the problem is A¢§ = ACE. Let € = ;Zl ] and find the matrix
1

representation for the problem. (6) can be written as:

R? R’D? + RD — n’I 0

7 (R*D? + RD — n’I — 5R?) + inRO,1h  —inR,w ] - A[ R?

In order to solve this G/Eig problem boundary conditions (BCs) are re-
quired. The physical BCs for this flow problem are already satisfied through
the O(1) equations. The BCs for the O(e) equations are homogeneous since
the perturbation has homogeneous end conditions. The right side BC occurs
at 7, which has been normalized so r, = 1. All Chebyshev polynomial are

equal to 1 at r, = 1. Furthermore, the left BC occur when r, = —1, and the
Chebyshev polynomials are equal to 1 here. This means the BCs are:
T T
0= [ 11 .- 1] @Qr,=1and 0= [ 1 -11 -1 .- 1] @r,=
-1

These boundary conditions are applied by removing the least important
equations in the G/Eig problem, namely the last two rows of each equation
in matrix form, and replacing these equations with the BCs.

After the BCs have been placed in the G/Eig problem, the stability of each
Fourier mode can be determined by the resulting eigenvalues. An unstable
Fourier mode indicates the flow has bifurcated to a new stable solution.

Stability Analysis of the Secondary Bifurcations

In this next step we are looking for secondary bifurcations from a steady
state, nonhomogeneous solution. The steady solution has r and # components
and is characterized by a specific number of vortices. Since the flow is now
dependent upon azimuthal variations, the perturbations from steady flow
are functions of r, 8, and ¢. These perturbations are still linear since we
are looking only for instabilities. Here are the forms for the vorticity and
stream-function steady solutions with perturbations:
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w(r,0,t) = wo(r,0) + cwi(r,0)e* and ¥(r, 0,t) = Yo(r, 0) + ety (r, 0)e

Unlike the homogeneous case the steady flow, wy and 1y, are functions
of # and are obtained from the numerical simulation. Of interest for this
perturbation analysis are wy, 11, and A. Note A is the eigenvalue and wy /1)y
form the eigenvector for this problem. As with the homogeneous problem the
G/Eig is A¢ = ACE. Substituting these expansions into (1) and (2) gives:

&\wle)‘t + % <6T(AJ069¢0 — 8Tw069w0 + EaTwlag’l,boe)\t) —
L (E&woagwle)‘t + £0,woOpth et — sar@bl(?gwoe)‘t) = (7)

1 At 8 (~ At
e [Awo + eAwie™ + 15 (0% —wy — cwse )]

Arpy + eAhe = —wy — we (8)

As before the system (7) and (8) has components of O(1) and Of(e).
However, this time wy and v, are already known so the O(1) equations are
used only if we want to find 0,wy and 0,1, directly instead of using Dw, and
D1)y. The O(1) system is:

L (8,005t — Oy thodaws) = 7= [ A + (@ — w)] (9)
Athy = —wo

The O(e) system is:
Awy et + % ( rwlaawoe)‘t - rwoaawle)‘t + 6rwoaaw1e” - rwlaawoe)‘t) =
= [Awle)‘t - }?—zwle)‘t]
At = —wieM
(13)

Considering (13) once again the problem is converted to Chebyshev/Fourier
vector form. This form differs from the homogeneous problem since multiple
Fourier modes are now present. The following expansion is generic and is
used for both the stream-function and vorticity:

N M
Cr0) =33 GuTn(r)e™ —1<r<1 0<6<2r

n=0m=0

T, (r) is the m*™™ Chebyshev polynomial

Cum is the ¢ coefficient for the n*® Fourier mode and the m'" Chebyshev
mode

An alternate form is used when only considering the outside, Fourier,
expansion:



N .
— Z gn (r)eme
n=0

Ca(r) is the Chebyshev expansion for the n't Fourier mode

This means the outer vector is Fourier and the inner vector is Chebyshev.
The Fourier coefficients are given by mode in terms of cosines and sine using
the conversion from exponential functions to trigonometric functions. Thus
a Fourier vector has the form:

C(Ta 0) = [ CCOSO(T) Ccosl('r) CcosN(T) 0 Csinl(r) CsinQ(T) CsinN(T) ]T

Ceos j(7)/Gsin () have Chebyshev expansions in vector form for each j

Thus each element in the Fourier vector is a Chebyshev vector having the
same form as the one explained for the homogeneous problem. Each vector
wo, Yo, w1, and 9y in the full problem is 2(N + 1)(M + 1) x 1. The sine zero
coefficients (all zeros) is kept to maintain symmetry in the problem.

Once the form of the vectors is described we consider multiplication and
differentiation by . Since these operations are independent of 6, the matrices
for multiplication and differentiation by r have block diagonal form. These
matrices are shown here:

RO ---0
R = 0 R . : for multiplication by r
0 0 R
D 0 -0 ]
D= 0 D ' 5 for multiplication by r
) 0 D

R and D are given for the homogeneous problem

In addition to the Chebyshev operations, R = randD = 0,, the full
problem now includes multiple Fourier modes and requires a matrix for dif-
ferentiation by 6. A new matrix is defined for this purpose, Q = 9. This
matrix is formed by applying differentiation to sine and cosine functions:



[0 0 0 0 1
R |
—21
o
Q=g o b D N for differentia-
I .
21

: .0 : P
o --- -+ 0 NI O -+ -+ =0 ]

tion by 6

Tisan M +1 x M + 1 identity matrix

After the tools are in place, rewrite system (13) in matrix vector form.
Recall system (9) simply shows the equality of the wy and 1y solutions which
have already been obtained via numerical simulations. The equations of
interest for the secondary bifurcations are the O(e) equations (13). These
equations are listed here after applying a multiplication by 7? and the above
definitions:

AR%w; + RQyoDw; — RD¢Qu; + RDwoQy — RQueDyy =
é [ﬁ2ﬁ2w1 + f{ﬁwl + Q2(JJ1 — RQ%wl] (10)
R?D%); + RD¢; + Q%)) = —Rw

The matrix vector form is similar to the homogeneous problem except for
the Q matrix. The existence of multiple Fourier modes increases the number
of nonlinear terms (those terms involving both D and Q) Furthermore,
these nonlinear terms are convolutions in Fourier space for the outer vectors.
Convolution in Fourier space using the cosine/sine basis is discussed below.
An additional expansion is used to clearly represent the nonlinear terms.
Following are the Fourier expansions of the perturbation vectors:

wi(r,8) =X @n(r) cosnb + p,(r) sinnf
N

P1(r,0) = X nu(r) cosnb + p, (1) sin nb
N

on(r), pu(r), nu(r), and p,(r) are all Chebyshev vectors
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Using these expansions and the Fourier vector notation, it’s time to in-
vestigate the nonlinear terms in (10). The nonlinear terms pose the greatest
difficulty, and these terms are completely represented using f{Qwoﬁwl and
—Rf)l/}onl as examples. (Note that the w; is substituted with a 1; for the
other two nonlinear terms, and the methods discussed here are independent
of wy and 9y). First look at the vectors involved in this calculation:

~ B B 5 5 B _ 1T
Q¢0:[0 —fn —2fg --- —Npy 0 7 210 --- N77N]

A~ ~ ~ ~ ~ ~ ~ ~ T
lez[DSOO Dy, Dy --- Dpy 0 Dp; Dpy --- DpN]

For the zero modes, wy and 1), the cosine/sine representations in vector
form are:

R L B L 4T
WOE[SOO o1 @2 o on 0 p1 opp o--- PN]

o . L _ 1T
%5[770 m 2 - v 0 o flgo--- MN]

Continuing the representation of the nonlinear terms in vector form re-
quires multiplication by Rand gives:
A . . . . R R T
RQyo=[0 -Rji, —2Rf; -~ —NRiy 0 R 2R - NRiy |

RQuoDuw; is actually the convolution of these vectors in Fourier space
S0 we write [RQ%] *p [le]. This is easily accomplished when the Fourier
modes are represented in exponential form. However, the conversion to the
trigonometric expansion is non trivial.

The Fourier convolution matrix (F-conmtx) resulting from an exponen-
tial basis uses the additive nature of exponents. Consider two expansions

SN ™ and N y.e™? multiplied together then the convolution matrix
and matrix vector multiplication is given by:

Co c_1 C_g -++ C_pn 0 0 -f}/_N
(&1 Co c.1 -+ Cc_yy1 C-n O e 0 Y-N+1
CN—1 « .. .« e CO DRI “ e « s C—N 0 /')/_1
CN CN—1 - C1 O C.1 ++* C_N41 C_N Yo
0 CN .« e « .. DRI CO « s e C—N+1 fyl
0 - 0 ey ey - G c 1 YN-1
L 0 « s DT 0 CN “ e C2 Cl CO i | /‘)/N ]
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Thus each coefficient of the convolution is a vector dot product given by:
S en ik Ye-n  —N <n <0
SN Nk Ve-Ntn 0>n >N

The vector resulting from this multiplication is the Fourier mode space
equivalent to point space multiplication of the original functions — just as it
is with C-conmtx.

Converting from the exponential expansion to the trigonometric expan-
sion is the next task. Using the standard form for the Fourier trigono-
metric expansion, ag + XV a, cos nd + b, sinnf, look at the modification of
ZHN cne™. There are three cases to investigate:

1) n =0 - resulting in ay = ¢

2) 1>n> N - then 2V c,e™ = 3V ¢, (cosnf + isinnd)

3) =N < n < —1 (but make the followmg change of variables: n = —n so
the sumis 1 — N asin case 2) - then YV c_,e ™ = YN ¢c_,, (cos nf — isinnh).

Combining the above cases leads to:

where n is the Fourier mode

Z]_VNC —Co+z (cn + ¢ pn)cosnl +i(c, —c_p)sinnd]

The results are ag = cg, ay, = ¢ + ¢_p, and b, =i (¢, — c_,). Rewriting
and solving for ¢, and c_, gives ¢, = @ and c_, = % Similarly
then we can write v, = ‘“‘;—’ﬂ" and v, = O‘T‘“;—”B" Using these conversions
between the exponential and trigonometric Fourier series in combination with
the previous F-conmtx gives the trigonometric convolution matrix and matrix

vector product:

Note the F-conmtx is made of 4 distinct blocks. Each block is N4+1x N +1
but requires a vector with 2/ entries. This is an advantage since 2N modes
can be investigated while using a matrix of half the size.

12

a  zm 502 saN 0 b
a1 ao+ 502 2 (@ N as) 2 (av-1+ans) 0 by
as % (a1 +ag) ao + 2a4 % (av—2 +ant2) 0 % (bs = b1)
an 5 (an—1+an1) % (GN—z + an+2) Gg + 302N 0 5 (by+1 = by-a)
0o --- . 0 0
by %bQ % (b3 —b1) T % (by+1 —by-1) 0 ao - %GQ
S (TR fnia—tn) 0 o - a
[ by 5 (v +by41) 5 (-2 +bys2) - ghay 0 5 (av-1—axs)

302
5 (b1 + b3)

t N

(byy2 — b

(a1 — a3)
ap — %(M

N[—= ' N~

s(an2—c



Returning to the problem at hand we see the F-conmtx given by [f{Q@bo] *p

[f)wl] can be represented in the form shown above. The convolution matrix

is written as F = Fi Fuip and the pieces of this matrix are:
Fo1 Fap
0 A _iﬁ'ﬂl _1::{[22 —%R%Nl
-Rin —Rpp -R (%ﬂl + %ﬂ?,) -+ —R (—2_
Fo=| —2Rj  —R (3 + L) —2R iy =
I —NRjiy -R ((Ng—_l)ﬂN—l + (N;Uﬂzvﬂ) -R (@fm_z + (N;r2)/1N+2) co+ —NRjipy
[0 0 0 0
Rii  Rip R (37 — i) o R( gy —
Fo = | 2R R (37 + 3is) 2R, R (M 2y
I NRiiy R (@ﬁNa + (N;—UﬁNH) R (@ﬁN—Z + (N;rQ) ﬁN+2) .o+ NRijoy
0 0 0 .- 0
0 Rii R (35 — 3in) - R(B iy, - O
Fy = 0 R (%ﬂ?) - %ﬂl) 2R 14 - R (NSLQ)[LNH — (N—Q_
[0 R (55w — O v ) R(UF2 s = B7%0n 2) - NRjboy

Finally, each element of the F matrix is the C-conmtx for the vector
occurring in that element. E.g. R, is the C-conmtx associated with the
R, vector. Recall 7j2(r) = 33 fim,2Tm(7), and the C-conmtx with g5, = R

2M
is given by Y;, = > Tp04,(m). The Y, is cropped to M +1 x M + 1 as
0
to contain the full data for a 2M vector. The C-conmtx is M +1x M + 1
but requires 2M entries in the vector just as with the Fourier convolution.
This is an advantage for the size of the matrix. Thus each element of the

matrix representing [RQ% *p [f)] has the form YD, a simple matrix
multiplication of the C-conmtx Y, and the Chebyshev derivative matrix D.
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Looking at the other form of nonlinear terms, —f{f)onwl, is nothing
more than a quick series of substitutions. Writing the point space multi-
plication in Fourier vectors gives the convolution —[Rf)wo] *p [le]. This
F-conmtx is formed as described above with each element given by Y, the C-

conmtx for the vector —fif)f where £ € ¥y = [ Mo T N2 - v 0 fg g -+ jin ]T.
Finally, the entire F-conmtx is multiplied by the Q matrix. Recall the Q ma-

trix acts on the whole Fourier vector or convolution matrix while the R and

D matrices act on individual elements, Chebyshev expansions, in a Fourier

vector or convolution matrix. The remaining nonlinear terms in the system

(10) are calculated using the ideas outlined in the previous paragraph of this

section.

The resulting G/Eig eigenvalue problem, A¢ = AC¢, with £ = l zl ]
1

has the form:
£ (RD? + RO+ Q? - R22) ~ RQuD + RDYQ RQuod - RDwQ |, _ TR 0],
R? R2D? + RD + Q2 0 0

Each nonlinear term (—f{Qwoﬁ, RDvQ, RQueD, and —f{ﬁwOQ) is
an F-conmtx

Boundary conditions (BCs) are the final requirement prior to solving this
problem. As before with the homogeneous problem, the BCs for the O(¢)
equations are homogeneous since the perturbation has zero end conditions.
The right side BC occurs at r, = 1. All Chebyshev polynomial are equal to 1
at r, = 1. Furthermore, the left BC occur when r, = —1, and the Chebyshev
polynomials are equal to &1 here. This means the BCs are:

0=[11 - 1] @,=1lando=[1 -1 1 -1 --- 1] @r,=
-1

With the full problem the BCs must be applied to every Fourier mode
simultaneously. The conditions are applied as before by removing the least
important equations in the G/Eig problem, namely the last two rows of
each equation in matrix form, and replacing these equations with the BCs.
However, this must be done to all Fourier modes so each M +1 x M + 1
diagonal block must have the BCs applied by replacing the last 2 rows.

The primary concern for this problem is the fact that A and C are
2(M + 1)2(N + 1) x 2(M + 1)2(N + 1). This severely limits the size of
the Chebyshev-Fourier expansion that can be considered. However, the C-
conmtx uses information of size 2M while the F-conmtx uses information
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of size 2N. This implies a problem initially containing 0 — M Cheby-

shev modes and 0 — N Fourier modes produces a G/Eig problem of size

(M +2)(N+1) x (M +2)(N +1). An eigenvalues problem containing 20

million elements is the most we can hope for currently. This restriction limits

the product of modes, (M + 2)(N + 1), to about 4400. The exact effects of

this limitation, and the nature of the limitation are still undetermined.
Improving Computational Efficiency

In order to reduce the size of the matrix for computation, we consider the
even/odd nature of the system. Due to the double coverage of the compu-
tational domain (discussed in the problem statement), even/odd structure is
built into the Chebyshev-Fourier (C-F) expansion. The vorticity and stream-
function, w and %, vectors are built from matrices with the following form:

* 00 0 % x 00 * %
0 0 = * 0 0 % =« 00
* 00 0 %« = 00 * %
00 = « 00 % =« 00
*x 000 x x 00 * %k
00 « = 0 0 * = 00
*x 000 x %« 00 * ok
00 x x 0 0 % =% 0 0
| 00 0 % % 0 0 -+ % * |

where the rows are Chebyshev modes beginning with 0 and going to M and
the columns are grouped in pairs for each Fourier mode beginning with 0 and
going to N . The first column in a Fourier mode pair is the cosine coefficient
and the second is the sine coefficient. Thus because the Fourier mode vectors
alternate even/odd the full problem vectors have the form:

T
W/b=[% 0 % 0 % - x 00 -« 00 %0 %0 -+ 0].

**Note the vectors always have the above form when M is even and N is
odd.

Now define E = evenmode and O = oddmode. The vectors can also been
seen as

w/¢=[EOEO--00--00EOE - 0]
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Furthermore, the R and D matrices also contain even/odd structure.
The Chebyshev polynomials alternate between being even and odd. Using
the definitions given above T} has the same parity as j. Thus all the terms in
the full G/Eig problem are even. The result of this structure is a reduction
of the G/Eig problem size by a factor of 4. Sine w/1 alternate even/odd and
the problem is even, every other row and every other column of the G/Eig
matrix is not required for finding eigenvalues. This allows us to consider
problems where (M + 2)(N + 1) is about 8800.

Summary

The generalized eigenvalue problem for the rotating disk is a rich problem
of nonlinear dynamics. The problem and solution outlined above addresses
only a single aspect of the dynamics involved with this problem. The solution
formulation using standard expansion methods for Chebyshev and Fourier
series results in an eigenvalue problem that can be solved. This problem
consists of two coupled equations in the variables of vorticity and stream-
function. The primary question revolves around the Chebyshev Fourier res-
olution required for accurate eigenvalues. This question is currently open.
However, the solution to the homogeneous case with independent Fourier
modes, and the solution to the full problem using the homogeneous flow as
the steady state yield identical results. While this result is encouraging, the
number of Fourier modes required to solve the nonhomogeneous problem is
unknown.
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