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a b s t r a c t

A singularly perturbed differential delay equation of the form

εẋ(t) = −x(t) + f (x(t − 1), λ) (1)

exhibits slowly oscillating periodic solutions (SOPS) near the first period-doubling bifurcation point
of the underlying map (obtained by setting ε = 0). For extremely small values of ε, these periodic
solutions resemble square waves, which consist of sharp, O(ε) transition layers connecting intervals of
approximately unit length. In this article, we obtain analytic expressions for these square-wave periodic
solutions, by solving the corresponding transition layer equations, and show that they are in excellent
agreement with numerical solutions for a range of values of ε and λ. We also derive analytic expressions
for other periodic solutionswhich are oddharmonics of the SOPS, and numerically exhibit their instability
near the first period doubling bifurcation point of themap. The numerical computations were performed
using a high accuracy Chebyshev spectral scheme. We give a brief description together with a study of
its accuracy and efficiency.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

In recent years, a singularly perturbed delay differential equation of the form

εẋ(t) = −x(t) + f (x(t − 1), λ) (2)

has served as amodel for physiological control systems [22] and for the transmission of light through a ring cavity [15,19,17]. Here ẋdenotes
the derivative of x, with respect to the dimensionless time t (t ≡ t ′/r , where r is the delay time). ε ≡ τ/r > 0 is a small parameter defined
as the ratio of the linear decay time (τ ) of the dependent variable to the delay and f (x, λ) represents a nonlinear function of xwith λ being
a control parameter. Setting ε to 0 reduces Eq. (2) to a map:

xn = f (xn−1, λ) (3)

whose dynamical properties are expected to reflect themselves in the solution of the differential equation, when ε is small. Significant
contributions to understanding the relationship between the behavior of themap, and that of the flow of the differential equation (2) have
been made by Chow and Mallet-Paret [7], Mallet-Paret and Nussbaum [24], Chow et al. [6] and Hale and Huang [14,13]. Mallet-Paret and
Nussbaum [23,24] have shown that if the fixed point, x0 = f (x0, λ), of the map loses its stability through a period-doubling bifurcation as
λ crosses a critical value λ0 then, under certain conditions on f (x, λ), there exists an ε0(λ) > 0 such that for 0 < ε < ε0, there is a slowly
oscillating periodic solution (SOPS) to the differential equation (2) of period close to, but greater than, 2. A SOPS is a periodic solution, such
that the interval between its successive zeroes (i.e. successive crossings with x0) is greater than 1. As ε decreases from ε0 to 0 for a given λ
close to λ0, these solutions change their shape from sinusoidal to square-waves. The square-wave SOPS consist of sharp transition layers
of order ε connecting flat plateaus of order 1 that are close to the period-2 fixed points of the map.
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Now, in the neighborhood of the fixed point x0, one can expand a generic nonlinear function f (x0, λ) in a Taylor series about x0. Let
x(t) = x0(λ) + y(t), then Eq. (2) becomes,

εẏ(t) + y(t) = a1y(t − 1) + a2y2(t − 1) + a3y3(t − 1) + · · · (4)
where a1 = f ′(x0, λ), a2 = f ′′(x0, λ) and so on. Thus the fixed point is shifted to 0, and the series can be truncated so that f (x, λ) in (2)
can be replaced by the first few nonlinear terms in the corresponding Taylor series. Chow et al. [6] make the specific assumption that

f (x, λ) = −f (−x, λ)

= −(1 + λ)x + x3 + o(x3) as x → 0 (5)
where for ε = 0, the point λ = 0 corresponds to a period-doubling bifurcation point for the map. They then show that the SOPS of
(2) are in one-to-one correspondence with the periodic solutions of a particular perturbed, planar Hamiltonian system, obtained by an
application of the theory of center manifolds. Further, they show that in the limit (λ, ε) → 0, the period of the square-wave solutions can
be expressed as 2 + 2ε + o(|ε|(|λ| + |ε|)).

Chow and Mallet-Paret [7] obtain a similar result for the period of square-wave SOPS in the case of a cubic nonlinearity as in (5), by a
different approach than Chow et al. [6]. They formulate a set of coupled delay-differential equations modeling the sharp transition layers,
and solve them using a two parameter perturbation expansion. The resulting leading order ordinary differential equation is exactly the
unperturbed Hamiltonian equation obtained by Chow et al. [6].

More recently, Erneux et al. [10] used a modified Poincaré–Lindstedt method to solve the original delay-differential equation (2) with
a generic non-linearity, in both small as well as large delay limits, near the first period-doubling bifurcation. They compare the analytical
and numerical bifurcation diagrams as the oscillations progressively change from sine-to-square waves.

In this paper, we consider the following equation,
εẋ(t) = −x(t) + λx(t − 1)(1 − x(t − 1)). (6)

Logistic nonlinearity is chosen, because we are interested in studying the periodic solutions of (2) in the neighborhood of x0. In this
region, as shown in (4), any generic nonlinear function f (x, λ) can be approximated by a quadratic nonlinearity. One can then scale x(t)
appropriately, so that the corresponding equation reduces to (6) to leading order. Since the logisticmap undergoes its first period-doubling
bifurcation at λ = 3, it can be shown that it satisfies the conditions for the existence of slowly oscillating periodic solutions of (6) in the
neighborhood of λ = 3.

The square-wave SOPS of (6) near λ = 3 exhibit a peculiar asymmetry. If one measures the time intervals between three successive
crossings of the square-wave solution with the average of the period-2 fixed points of the map, one of them turns out to be ∼ 1 + 2ε,
while the other is O(1). Taking note of this observation, we formulate the corresponding transition layer equations and solve them using
an approach similar to the one used by Chow and Mallet-Paret [7]. By employing a two-parameter perturbation expansion in ε and
σ =

√
λ − 3 for the two ‘‘half-periods’’, and using an appropriate scaling between ε and σ , we obtain analytic expressions for the square-

wave SOPS in the neighborhood of the first period-doubling bifurcation point of the map. The leading order equation again represents
the unperturbed Hamiltonian system obtained by Chow et al. [6] and Hale and Huang [13], however, it does not explain the observed
asymmetry in the solution. We calculate the next order correction, which not only explains this asymmetry, but also gives a much better
agreement between the overall analytic expression and the form of the solutions obtained by integrating (6) numerically. An accurate
expression for the period of these solutions, as a function of ε and λ is also obtained.

Further,we use our approach to obtain analytic expressions for other periodic solutions of (6)which can be considered as oddharmonics
of the SOPS. By using the leading order approximations for these solutions as initial functions over the interval [−1, 0], we integrate
(6) numerically to show that, in the neighborhood of the first period-doubling bifurcation point of the map, these initial functions are
eventually attracted to the SOPS and not to the odd harmonic periodic solutions.

Our derivation of the asymptotic expressions for the square-wave SOPS is not limited to the specific logistic nonlinear functional form
used in Eq. (6). It can be generalized to any generic nonlinearity as sketched in Appendix A.

Numerical integration of (6) is done using an efficient spectral algorithm based on a method devised by Coutsias et al. [9,8] to integrate
ordinary differential equations with rational function coefficients. The algorithm is outlined in Appendix B, and its accuracy in obtaining
periodic solutions of linear scalar delay-differential equations as well as the square-wave solutions of (6) is compared with that of
RADAR5 [12], a state-of-the-art Runge–Kutta method.

The paper is organized as follows: In Section 2, we re-derive the Hopf bifurcation curve relating λ and ε and the transition layer
equations. The main result of this paper is presented in Section 3, in which we derive analytic expressions for the square-wave SOPS
in terms of elliptic functions using a perturbation analysis, and show the agreement between the analytical and the numerical results for
different values of λ and ε. Section 4 dealswith the odd-harmonic solutions and their stability, andwe discuss our results and, in particular,
compare the scaling used by us with the one used by Erneux et al. [10] in the final section.

2. Background

2.1. Fixed points of the logistic map

The logistic map is given by
xn = λxn−1(1 − xn−1). (7)

It has two fixed points at 0 and at x0(λ) = 1 −
1
λ
. For 0 < λ < 1, only the trivial fixed point is stable. For 1 ≤ λ < 3, the trivial fixed

point is unstable and only x0(λ) is stable. At λ = 3, x0 becomes unstable and goes through a period-doubling bifurcation giving rise to two
period-2 fixed points x+ and x− given by

x± = a ± b; a =
λ + 1
2λ

; b =

√
(λ + 1)(λ − 3)

2λ
. (8)
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Fig. 1. Left: The Hopf bifurcation curve. Right (top): The sinusoisal solution (λ = 3.01 and ε ≈ 0.045). Right (bottom): The square-wave solution (λ = 3.01 and ε = 0.01).

Thus if Eq. (7) is written as

x(t) = λx(t − 1)(1 − x(t − 1)) (9)

then as λ crosses the value 3, the steady state solution x(t) = x0 loses stability to a periodic solution of period 2. This periodic solution
becomes unstable at λ ≈ 3.45 and bifurcates into a period-4 solution which, as λ increases further, bifurcates into a period-8 solution and
so on, thus following a period-doubling route to chaos.

2.2. The Hopf bifurcation curve

As the logisticmap undergoes its first period-doubling bifurcation, the solution to the delay equation (6) also exhibits a Hopf bifurcation
from a stationary state x(t) = x0 to a SOPS of period approximately equal to 2. However, the value of λ at which this bifurcation occurs
depends on the value of ε. Chow andMallet-Paret [7] show that the constant solution x(t) = x0 loses its stability along a curve in the λ−ε
plane. This section derives an expression for this curve relating λ and ε in the limit (λ, ε) → (3, 0) [3,26].

Linearizing equation (6) about the fixed point x0 of the map gives,

εη̇(t) + η(t) − αη(t − 1) = 0 (10)

where x(t) = x0 + η(t) and α ≡ α(λ) = λ(1 − 2x0) = 2 − λ. The characteristic equation of Eq. (10), obtained by substituting η(t) = est ,
has exactly two roots with zero real part while other roots have negative real parts when ε, α satisfy the equations

tan(ω0) = −εω0; ε2ω2
0 = α2

− 1 (11)

where 0 < ω0 < π is the frequency of the SOPS. In the asymptotic limit, as ε → 0, ω0 → π which corresponds to the period-2 solution
of the map.

Let σ =
√

λ − 3, then α in Eq. (11) can be written as α = −(1 + σ 2). Hence the second of Eq. (11) becomes,

ε2
0ω

2
0 = 2σ 2

+ σ 4. (12)

Close to λ = 3, the bifurcation point of the map, σ is small and hence ω0 ≈ π . One can then ignore O(σ 4) term in the above equation and
write

ε0 ≈

√
2

π
σ =

√
2

π

√
λ − 3. (13)

Thus for a given λ > 3, there exists an ε0, such that for 0 < ε < ε0, there exist SOPS to Eq. (6). Conversely, for a given ε > 0 (delay),
such solutions exist, only above a certain value of λ given by (13). Eq. (13) is plotted in the left side of Fig. 1. In the limit, (λ, ε) → (3, 0),
the constant solution x(t) = x0 loses its stability along this Hopf bifurcation curve, giving rise to an asymptotically stable SOPS, when (λ,
ε) take values to the right of this curve, as shown by Chow and Mallet-Paret [7]. The shape of the SOPS is sinusoidal near this curve i.e.
when ε = O(σ ), however, as shown in the right side of Fig. 1, it resembles a square-wave when ε = O(σ 2) or smaller. Here, x(t) is scaled
linearly so that x0 = 0. An important thing to note is the marked difference in the amplitudes of the two solutions for the same value of λ,
clearly indicating its dependence on the value of ε.

2.3. The transition layer equations

A typical asymptotic form of a square-wave SOPS is shown in Fig. 2. If, for any integer n, t2n and t2n+1 denote the time instants when
the solution crosses a, the average of two period-2 fixed points x+ and x−, with negative and positive slopes respectively, then we define
the two ‘‘half-periods’’, 1 + δ1 and 1 + δ2 as:

t2n − t2n−1 = 1 + δ1 and t2n+1 − t2n = 1 + δ2. (14)
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Fig. 2. Asymptotic form of a square-wave solution with definitions of two ‘‘half-periods’’, 1 + δ1 and 1 + δ2 . Here x(t) is scaled so that x0 = 0 and a, the average of x− and
x+ is negative (The horizontal line in center).

Thus the period of the waveform in Fig. 2 is given by 2 + δ1 + δ2. Now one can define

U(t) = x(t); V (t) = x(t − 1 − δ1). (15)

Then the periodicity of the waveform implies,

U(t) = V (t − 1 − δ2) = V (t + 1 + δ1); U(t − 1) = V (t + δ1) (16)
V (t) = U(t − 1 − δ1) = U(t + 1 + δ2); V (t − 1) = U(t + δ2). (17)

Substituting in (6) gives,

εU ′(t) + U(t) = f (λ, V (t + δ1)) (18)

εV ′(t) + V (t) = f (λ,U(t + δ2)) (19)

where, again, f (x, λ) = λx(1 − x). In the asymptotic limit ε → 0, these equations, describe the transition layers that connect the almost
flat regions of the square-wave solution [7].

3. Analytic expressions for slowly oscillating periodic solutions

We now solve the transition layer equations using a Poincaré–Lindstedt method in a similar fashion, as done by Chow and Mallet-
Paret [7], except, instead of taking an asymptotic limit ε → 0, we demand periodic solutions to the equations [3]. First, δ1 and δ2 are
assumed to have the following expansions in terms of (ε, σ ):

δ1 = ε(a10 + a11σ + a12σ 2
+ · · ·) + ε2(a20 + a21σ + a22σ 2

+ · · ·) + O(ε3)

δ2 = ε(b10 + b11σ + b12σ 2
+ · · ·) + ε2(b20 + b21σ + b22σ 2

+ · · ·) + O(ε3).

Thus the expression for the period of the solution becomes:

T = 2 + δ1 + δ2

= 2 + ε(c10 + c11σ + c12σ 2) + ε2(c20 + c21σ) + ε3(c30) + O(εσ 3, ε2σ 2, ε3σ)

where, cij = aij + bij. Since the periodic solution to the original Eq. (6) is referenced from the value a, it makes sense to write the transition
layer equations in terms of u(t) and v(t) which are defined as:

U(t) = a − bu(t); V (t) = a + bv(t). (20)

Then the transition layer equations take the form:

εu′(t) + u(t) = v(t + δ1) + µ(v2(t + δ1) − 1) (21)

εv′(t) + v(t) = u(t + δ2) − µ(u2(t + δ2) − 1) (22)

where, µ = λb:

µ =

√
(λ + 1)(λ − 3)

2
= σ +

σ 3

8
−

σ 5

128
+ O(σ 7). (23)

Next, the time variable is transformed to s =
σ t
εT , so that the period of the solution in terms of s is σ/ε. This changes the transition layer

equations to

σu′(s) + Tu(s) = Tv(s + ξ1) + Tµ(v2(s + ξ1) − 1) (24)

σv′(s) + Tv(s) = Tu(s + ξ2) − Tµ(u2(s + ξ2) − 1) (25)
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where ξ1 = (σδ1)/(εT ) and ξ2 = (σδ2)/(εT ). Now u(s) and v(s) are expanded in terms of σ :

u(s) = u0(s) + σu1(s) + σ 2u2(s) + σ 3u3(s) + O(σ 4)

v(s) = v0(s) + σv1(s) + σ 2v2(s) + σ 3v3(s) + O(σ 4).

As shown in Eq. (13) in the last section, these SOPS exist for ε ≈ (
√
2/π)σ or smaller. Further, we are primarily interested in obtaining

a functional form of the square-wave solutions, which exist away from the Hopf-bifurcation curve. Hence we choose ε ∼ O(σ 2) as the
distinguished limit and match orders of σ by substituting the expansions given above, in the transition layer equation (24) and (25). It
turns out that in the parameter region where these SOPS are sinusoidal in shape, there is a good agreement between the numerical and
analytic solutions obtained by using the scaling mentioned above.
To O(1):

2u0(s) = 2v0(s); 2v0(s) = 2u0(s) (26)

O(σ ):

u′

0 + 2u1 = 2v1 + a10v′

0 + 2v2
0 − 2

v′

0 + 2v1 = 2u1 + b10u′

0 − 2u2
0 + 2

O(σ 2):

u′

1 + 2u2 + c10u0 = 2v2 + a11v′

0 + a10v′

1 + a210v
′′

0/4 + 4v0v1 + 2a10v0v
′

0 + c10v0

v′

1 + 2v2 + c10v0 = 2u2 + b11u′

0 + b10u′

1 + b210u
′′

0/4 − 4u0u1 − 2b10u0u′

0 + c10u0

O(σ 3):

u′

2 + 2u3 + c10u1 + c11u0 = 2v3 + (a12 + a20)v′

0 + a11v′

1 + a10v′

2 + c11v0 + c10v1

+ (a210v
′′

1 + 2a10a11v′′

0 )/4 + a310v
′′′

0 /24 + 2v2
1 + 2a10v1v

′

0 + a210v
′

0
2
/2

+ 4v0v2 + 2a11v0v
′

0 + 2a10v0v
′

1 + a210v0v
′′

0/2 + (v2
0 − 1)/4 + c10(v2

0 − 1)

v′

2 + 2v3 + c10v1 + c11v0 = 2u3 + (b12 + b20)u′

0 + b11u′

1 + b10u′

2 + c11u0 + c10u1

+ (b210u
′′

1 + 2b10b11u′′

0)/4 + b310u
′′′

0 /24 − 2u2
1 − 2b10u1u′

0 − b210u
′

0
2
/2

− 4u0u2 − 2b11u0u′

0 − 2b10u0u′

1 − b210u0u′′

0/2 − (u2
0 − 1)/4 − c10(u2

0 − 1)

O(1) equations just imply u0(s) = v0(s). Using this in the O(σ ) equations gives

a10 + b10 = c10 = 2 (27)

u1(s) − v1(s) =

(
a10 − b10

4

)
u′

0(s) + u2
0(s) − 1. (28)

Adding the O(σ 2) equations gives the equation for u0(s):

u′′

0 + 2c11u′

0 + 2c210(u0 − u3
0) = 0. (29)

Since u0(s) has to be a periodic function, c11 = (a11 + b11) must be set to 0. The integral curves of this equation are given by

u′

0
2
+ 2c210u

2
0 − c210u

4
0 = 2C . (30)

In the singular limit, i.e. ε → 0, it can be easily shown that u0(s) ∼ tanh(s) with C → 2 since the boundary conditions in such a limit are:
u0(s) → ±1 as s → ±∞. This is done in [7]. In contrast, we seek a periodic solution in the distinguished limit of ε ∼ O(σ 2). Hence C is
set to c210(1 − η2)/2, where, 0 < η < 1 can be found from the period of the solution. Eq. (30) implies,

s =

∫ u0

0

dy

c10
√

(y2 − u2
0+)(y2 − u2

0−)

where, u2
0+ = 1 + η and u2

0− = 1 − η are the roots of the equation, u4
0 − 2u2

0 + (2C/c210) = 0. Thus,

c10s =
1

u0+

∫ φ

0

dθ√
1 − k2 sin2 θ

(31)

where sinφ = u0/u0− and k is the modulus of the elliptic integral of the first kind. k and the complementary modulus k′ are given by:

k2 =
1 − η

1 + η
; k′2

= 1 − k2 =
2η

1 + η
. (32)

Hence u0(s) = v0(s) can be written as

u0(s) = u0−sn(c10u0+s, k) =
√
1 − η sn

(
2(
√
1 + η)s, k

)
. (33)

Here sn(z, k); z = 2(
√
1 + η)s, is the Jacobi elliptic function.
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3.1. Calculation of η

Now, the period of u0(s) is σ/ε. Hence the quarter period K(k) (the complete elliptic integral of the first kind) of sn(z, k) is
(σ/2ε)

√
1 + η. But K is also a function of k, the modulus of the elliptic function, which depends on η. Thus given σ and ε, η and hence the

value of C in Eq. (30) can be calculated by solving the following equation numerically:

1
2

√
1 + η

σ

ε
= K(k); k2 =

1 − η

1 + η
. (34)

For a given value of σ , as ε → 0, η → 0 and k → 1, and the solutions become more square-wave like. In this case, there is an asymptotic
expression for K(k) [2,5]:

lim
k→1

K = ln(4/k′) (35)

which implies,

η =
8 exp(−2K)

1 − 8 exp(−2K)
=

8 exp
(
−

√
1 + ησ/ε

)
1 − 8 exp

(
−

√
1 + ησ/ε

) . (36)

3.2. The first order corrections

The equations for u1(s) and v1(s) turn out to be:

u′′

1 + 8(1 − 3u2
0)u1 = −2(4/3 + γ2)u′

0 + 8u2
0u

′

0 − 4η2 (37)

v′′

1 + 8(1 − 3u2
0)v1 = −2(4/3 + γ2)u′

0 + 8u2
0u

′

0 + 4η2. (38)

Here, γ2 = c12 + c20. u′

0(s) = v′

0(s) is clearly a solution to the homogenous part of each of these two equations.
First, we try to find the value for γ2. The solvability condition for Eq. (37) requires,

−2 (4/3 + γ2)

∫ σ/ε

0
u′

0
2
(s)ds + 8

∫ σ/ε

0
u2
0(s)u

′

0
2
(s)ds − 4η2

∫ σ/ε

0
u′

0(s)ds = 0. (39)

Let Γ = −(4/3 + γ2). Then Eq. (39) implies,

Γ

∫ 4K

0
cn2(z)dn2(z)dz + (1 − η)

∫ 4K

0
sn2(z)cn2(z)dn2(z)dz = 0. (40)

These integrals can be done analytically [5] yielding,

γ2 = c12 + c20 = −
8
15

−
12
5

η2 (K(k) − E(k))
(E(k) − ηK(k))

. (41)

Here, E(k) is the complete elliptic integral of the second kind given by,

E(k) =

∫ K

0
(dn2(u))du =

∫ π/2

0

√
1 − k2 sin2 θdθ. (42)

Thus, given σ and ε, the values of η, k, K(k) and E(k) and hence γ2 and amore accurate value for the period of these solutions can be found.
Numerical evidence suggests that c20 ≈ 0 (a20 and b20 individually are not zero). Thus the expression for the period becomes,

T = 2 + ε(2 + c12σ 2
+ O(σ 3)); c12 = −

8
15

−
12
5

η2 (K(k) − E(k))
(E(k) − ηK(k))

. (43)

In the limit ε → 0, since η ∼ exp(−2K) and K � E, it is clear from (41) that c12 ≈ −8/15. Hence, an analytic expression for the period
of the square-wave SOPS can be written as:

T ≈ 2 + 2ε
(
1 −

4
15

σ 2
+ O(σ 3)

)
. (44)

This is exactly the expression that Chow and Mallet-Paret [7] have derived for the period of the square-wave solution in the limit ε → 0.
Given γ2, we proceed to find a particular solution to Eq. (37). It turns out that the equations as written in the form given in (37) and

(38) are not exactly solvable. Hence, since the equations are linear, we separate each equation into two parts, one of which is solvable
analytically, while the other is solved numerically, i.e.

u1(s) = u1c(s) + u1−(s); v1(s) = u1c(s) + u1+(s) (45)

where the common function u1c satisfies the equation

u′′

1c + 8(1 − 3u2
0)u1c = −2(4/3 + γ2)u′

0 + 8u2
0u

′

0 (46)

and u1± satisfies:

u′′

1± + 8u1± − 24u2
0u1± = ±4η2 (47)
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Fig. 3. Left: Closely matched, analytic and numerical waveforms for different values of ε at σ = 0.1. Right: The difference between the analytic solution and the numerical
solution over a whole period for six different values of ε at σ = 0.1. The maximum error is O(σ 3).

u1± can be obtained analytically and are given by:

u1±(s) = ±

(√
1 − η2

)(dn2(z) + k2cn2(z)
4k

−
cn(z)dn(z)

2

)
. (48)

u1c is solved numerically using a spectral code and added to u1± to calculate u1 and v1. The numerical algorithm for the spectral code is
outlined in Appendix C.

3.3. Comparison of analytic results with numerical ones

Thus the analytic form of a SOPS can be written as

x(t) = a ± b
(
u0(t) + σ [u1c(t) + u1±(t)] + O(σ 2)

)
(49)

where,

u0(t) =
√
1 − η sn

(
2σ
εT

(
√
1 + η)t, k

)
; k2 =

1 − η

1 + η
(50)

u1±(t) = ±(
√
1 − η2)

(
dn2(z, k) + k2cn2(z, k)

4k
−

cn(z, k)dn(z, k)
2

)
(51)

with z = (2σ
√
1 + ηt)/(εT ). u1c(t) is obtained numerically by solving the equation:

u′′

1c(s) + 8(1 − 3u2
0(s))u1c(s) = −2(4/3 + c12)u′

0(s) + 8u2
0(s)u

′

0(s); (52)
with s = (σ t/εT ). Finally the period of each of u0(t), u1c(t) and u1±(t) and hence of x(t) is given by

T = 2 + ε(2 + c12σ 2
+ O(σ 3)); c12 = −

8
15

−
12
5

η2 (K(k) − E(k))
(E(k) − ηK(k))

. (53)

We integrated the original delay equation (6), using the spectral algorithm outlined in Appendix B, and then compared the resulting SOPS
over a period with the corresponding semi-analytic expression given above, by calculating the elliptic functions in MATLAB. The left side
of Fig. 3 plots the numerical solution and the expression (49) over a single period in the two limits when the solution is sinusoidal and
square-wave. The right side of Fig. 3 shows the difference between the two solutions on equally spaced points over a period. Themaximum
difference is O(σ 3) as expected, since b in (49) above is O(σ ). Table 1 shows the maximum difference between the solutions over a period
for four values of λ, close to the bifurcation value of the map and six values of ε spanning the entire space for which the solution is known
to exist. The difference is O(σ 3) as expected.

Thus for a given σ and ε, η can be calculated, using (34) which in turn gives k, the modulus of the elliptic functions, and hence an
approximate solution to the original delay equation (6). In fact, the value of η depends on the ratio of σ to ε and it is this ratio that
determines the shape of the solution and, in particular when the solution looks like a square-wave, the shape and the thickness of the
transition layers connecting the plateaus in the solution. Fig. 4 plots u0(t) andσu1(t) = σ(u1c(t)+u1−(t)) andσv1(t) = σ(u1c(t)+u1+(t))
for a particular choice of parameters (λ, ε). It is clear that the amplitude of the approximate solution is determined by u0(t), while addition
of σu1(t) and σv1(t) primarily contributes to the observed inequality in the half-periods of the solution by shifting the zero of u0(t) away
from T/2.

Now the amplitude of x(t), as given in (49) is thus, b
√
1 − η. Thus, for a given σ , in the limit ε → 0, η ∼ exp(−σ/ε) → 0 and the

amplitude of x(t) differs from b – the amplitude of the period-2 solution of the map – by an exponentially small term. As ε is increased,
η increases and the amplitude of the solution begins to drop. In the other limit, as ε → ε0(σ ), the Hopf bifurcation value for a given σ ,
η → 1 and the amplitude of the solution → 0. This is expected, since according to the linear theory, these slowly oscillating periodic
solutions do not exist if ε increases beyond ε0(σ ).
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Table 1
Maximum difference over a whole period, between the numerical solutions and the analytic expressions for different values of σ and ε

σ = 0.05 σ = 0.1 σ = 0.15 σ = 0.2
ε Max. diff. ε Max. diff. ε Max. diff. ε Max. diff.

0.01 8.98E−05 0.02 3.22E−04 0.03 7.66E−04 0.04 2.01E−03
0.005 3.92E−05 0.01 2.60E−04 0.015 7.09E−04 0.02 1.47E−03
0.0034 2.68E−05 0.0067 2.12E−04 0.01 6.04E−04 0.013 1.29E−03
0.0025 3.26E−05 0.005 9.84E−05 0.0075 3.03E−04 0.01 8.11E−04
0.002 1.71E−05 0.004 8.68E−05 0.006 3.22E−04 0.008 1.14E−03
0.0017 2.91E−05 0.0034 8.82E−05 0.005 3.41E−04 0.0067 8.69E−04

The difference, as expected, is O(σ 3).

Fig. 4. Figure shows that the amplitude of u0(t) is not affected by the addition of u1(t) and v1(t), however the location of its zero at the half-period is changed. Here σ = 0.2
and ε = 0.01.

4. Odd harmonic solutions

In the period-2 regime of the continuous logistic map given by,

x(t) = λx(t − 1)(1 − x(t − 1)) (54)

there exist solutions other than the fundamental period-2 solution given by x(t) = x+ for t ∈ I2m and x(t) = x− for t ∈ I2m+1,
where Im = (m,m + 1]. These other solutions, called the fissured solutions of nth degree (n:odd) by Ikeda et al. [20], are given by
x(t) = x± for t ∈ I2m2k and x(t) = x∓ for t ∈ I2m2k−1 where Imk = (m + tk−1,m + tk], for 1 ≤ k ≤ (n + 1)/2, is the kth of the n
subsections of Im : Im1 = (m,m + t1], Im2 = (m + t1,m + t2], . . . , Imn = (m + tn−1,m + 1] for an arbitrary sequence {tk} of t satisfying
0 < t1 < t2 < · · · < tn−1 < 1. Clearly, there are infinitely many fissured solutions of a given degree. In the case of the delay equation (6)
though, only a finite number of other solutions, which are the odd harmonics of the SOPS, can exist for a given value of ε and λ. In this
section, we derive analytic expressions for these odd harmonics of (6) and then show that they are not stable against small perturbations,
in the neighborhood of the first period-doubling bifurcation point of the map.

The existence of these odd harmonic solutions of Eq. (2) can be seen very easily [17,21,16,18], by transforming Eq. (2) to

ẋ(t) = −x(t) + f (x(t − r), λ) (55)

where r = 1/ε is the value of the delay. Let us assume, that for a particular set of values of λ and r , there exists a SOPS, denoted by xr(t),
whose period is given by T (r) = 2r + c(λ), according to (53). Here c is a constant which depends only on λ as the period depends only
linearly on ε = 1/r . In this case, one can write, for some integer n,

ẋr(t) = −xr(t) + f (xr(t − r − nT (r)), λ) (56)
ẋr(t) = −xr(t) + f (xr(t − rn), λ) (57)

which implies that xr(t) is a solution of (55) for a higher value of delay rn = r + nT (r). However, clearly, xr(t) is not the SOPS of (57) as
the SOPS, xrn(t), of (57) has the period

T (rn) = 2rn + c(λ) = (2n + 1)T (r). (58)

This means, that xr(t) is the (2n+ 1)th harmonic solution of (57), whose period is exactly 1/(2n+ 1) times the period of the SOPS of (57).
Thus for a given value of λ, a SOPS of the delay equation (55) at a particular value of the delay r(ε) is an odd harmonic solution of order
(2n + 1) of the equation with a higher (lower) value of delay rn(εn). Conversely, for a given set of values of λ and ε, several odd-harmonic
solutions can co-exist with the SOPS, if ε is sufficiently smaller than ε0(λ), the value at which the SOPS is born. Clearly, there is amaximum
number of these odd-harmonic solutions that can co-exist at these values of λ and ε, because an odd harmonic solution of order (2n + 1)
for this set (λ, ε) is a SOPS of (λ, εn), where εn must be smaller than ε0(λ) for it to exist.

Please cite this article in press as: M.H. Adhikari, et al., Periodic solutions of a singularly perturbed delay differential equation, Physica D (2008),
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Fig. 5. Left: The first five odd harmonic solutions to Eq. (62) over a whole period in units of s; their periods in units of t are different. Right: The phase space plot; the ninth
harmonic is barely born. Here, σ/ε = 20.

Thus while in the case of the map, all odd-harmonics of the period 2 solution exist in the entire period-2 regime of the map, only a
finite number of them can co-exist in the case of the differential equation, and for a given value of λ, the upper bound on the number of
possible odd-harmonic solutions depends on the value of the delay (ε).

We now derive a leading order analytic expression for these odd harmonic solutions, by solving the corresponding transition layer
equations near the first period-doubing bifurcation point of the logistic map [3]. To begin with, a (2n + 1)th harmonic solution to (6) is
assumed to have a period [2/(2n + 1)] + δ1 + δ2; n = 0, 1, 2, . . .. The n = 0 case corresponds to the SOPS whose functional forms are
derived in the last section. We now assume,

U(t) = x(t); V (t) = x
(
t −

1
2n + 1

− δ1

)
. (59)

Substituting in (6) and using the periodicity of the waveform gives,

εU ′(t) + U(t) = f (λ, V (t + (n + 1)δ1 + nδ2)) ; n = 0, 1, 2, . . . (60)

εV ′(t) + V (t) = f (λ,U(t + (n + 1)δ2 + nδ1)) ; n = 0, 1, 2, . . . . (61)

The same expansions, in terms of (σ , ε) are assumed for δ1 and δ2. Again changing the variable to s = σ t/(εT ) and assuming the same
expansions for u(s) and v(s) in terms of σ , gives similar equations for u0, u1 and v1, albeit with different coefficients. Thus,

u′′

0 + 2c210(u0 − u3
0) = 0; c10(n) =

2
2n + 1

; n = 0, 1, 2, 3, . . . . (62)

u′′

1 + 2c210(1 − 3u2
0)u1 = −2(2c10/3 + γ2)u′

0 + 4c10u2
0u

′

0 − c210η
2 (63)

v′′

1 + 2c210(1 − 3u2
0)v1 = −2(2c10/3 + γ2)u′

0 + 4c10u2
0u

′

0 + c210η
2. (64)

Thus u0(t) is given by:

u0(t) =
√
1 − η sn

(
2

2n + 1
(
√
1 + η)

σ

εT
t, k
)

; k2 =
1 − η

1 + η
. (65)

The expression for the period is given by:

T =
2

2n + 1
+ ε

(
2

2n + 1
+ c12σ 2

+ O(σ 3)

)
(66)

c12 = −
8

15(2n + 1)
−

12
5(2n + 1)

η2 (K(k) − E(k))
(E(k) − ηK(k))

and η can be calculated by solving:

1
2(2n + 1)

√
1 + η

σ

ε
= K(k); k2 =

1 − η

1 + η
. (67)

It is evident that the value of η for the SOPS (n = 0), is equal to its value for the third harmonic (n = 1) solution if the ratio of σ to ε is
thrice its value for the SOPS. Thus for a given σ and sufficiently small ε, several odd harmonic solutions can exist simultaneously as seen
in Fig. 5.

Next, the functional form of u0(t) as given in (62) is used as an initial function to integrate the original delay equation, using the spectral
method outlined in Appendix B. We observe that such an initial function is not attracted to the corresponding odd harmonic solution, but
instead settles to the corresponding SOPS. This implies that the odd harmonic solutions are not stable against small perturbations in the
neighborhood of the first period-doubling bifurcation point of the map.
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Fig. 6. Left: The decay of the leading order approximation to the third harmonic to the SOPS. Here σ = 0.1 and ε = 0.01. Right: The logarithm of time of decay as a function
of σ/ε. The linear plot and same slopes for different values of σ suggests that Tdecay ∝ exp σ/ε.

We measure the time of decay of these initial functions in terms of the number of intervals for which they survive, by measuring the
number of zeroes of the derivative of the solution in a given interval. Fig. 6 shows the decay of an initial function consisting of 3 transition
layers, expressed by the leading order approximation for the third harmonic solution, in a single initial time interval of length 1. The
decay happens with two of the layers collapsing together. The right side of Fig. 6 plots log of the time of decay of the third harmonic
as a function of σ/ε, for three different values of σ . The time of decay increases exponentially as a function of σ/ε, thus, for extremely
small values of ε, these initial functions can be very long lived. Since the lines for different values of σ are almost parallel, one can write,
Tdecay = c1(σ ) exp(c2σ/ε) where c1 and c2 are constants and c1 is dependent on σ .

5. Conclusion

In this paper, we have derived approximate analytic expressions for slowly oscillating periodic solutions of a singularly perturbed delay
differential equation with logistic nonlinearity. These expressions, derived using a two-parameter perturbation expansion in terms of ε,
the ratio between the linear decay time (τ ) of the dependent variable and the delay time, and σ , which depends on the distance from the
period-doubling bifurcation point of the underlying map, and the scaling ε = O(σ 2), match accurately with the corresponding numerical
solutions. We were also able to derive accurate expressions for the period of these solutions. In particular, the calculation of first order
correction to the leading order expression, explains the observed asymmetry of square-wave solutions mentioned in the introduction. In
the distinguished limit, ε = O(σ 2), these solutions resemble square-waves, however, as ε approaches ε0 = O(σ ), the Hopf bifurcation
value, they become sinusoidal. We found a close agreement between the analytic expressions and the numerical forms for the sinusoidal
solutions as well. Further, we were able to demonstrate the gradual change in the amplitude of these solutions as they change their shape
from sinusoidal to square, using the analytic expressions derived.

Erneux et al. [10] employ a modified Poincaré–Lindstedt method to solve the original delay equation (2). By using the scaling σ = Λε,
they track the bifurcation curve uniformly, with the parameter Λ determining the character of the solutions from sinusoidal to square.
However, in this treatment, the leading order equation changes if ε is of lesser order. By using the present scaling, ε = O(σ 2), we are
able to give a unified treatment that remains qualitatively unchanged if ε is of any lesser order, including ε → 0 for σ fixed. In fact, the
nonlinear ODE for u0 remains unchanged for all such limit processes, allowing us to introduce η as an independent parameter, that can
assume any value in the interval [0, 1].

By using the same perturbative approach, we have also derived analytic expressions for odd harmonic solutions of the delay equation,
near the first period-doubling bifurcation point of the underlying map. We have then shown that these odd harmonic solutions are not
stable against small perturbations. That is, if one integrates Eq. (6), starting with a leading order approximation for an odd harmonic
solution, then while such a form can remain extremely long-lived for a very small value of ε, the solution is driven away from the odd
harmonic and eventually settles to the corresponding slowly oscillating periodic solution. While a logistic form of nonlinearity is taken as
a prototype for this study, as shown in Appendix A, our treatment can be easily modified for a general form of nonlinearity such as the
Ikeda model [17] and similar results can be obtained.

Numerical integration of the original delay equationwas done using an accurate spectral algorithm [9,8]. The efficiency and accuracy of
this scheme in obtaining stiff solutions of delay equations was checked by comparing it with the state-of-the-art time-stepping algorithm
as outlined in Appendix B.

Appendix A. The case of a generic nonlinearity

The derivation for the analytic expressions for the SOPS to Eq. (6) can bemodified easily to the case of Eq. (2)with a general nonlinearity:

εẋ(t) = −x(t) + f (x(t − 1), λ), t ≥ 0 (A.1)

where it is assumed that the map f (x, λ) undergoes a period-doubling bifurcation at λ = λ0 when x0 = f (x0, λ0), the fixed point of the
map, becomes unstable. The transition layer equations remain the same as defined in Eqs. (18) and (19).

εU ′(t) + U(t) = f (λ, V (t + δ1)) (A.2)
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εV ′(t) + V (t) = f (λ,U(t + δ2)) (A.3)

except the ‘‘half-periods’’, 1 + δ1 and 1 + δ2 are defined as the time intervals between successive crossings of the solution with x0, the
unstable fixed point of the map. Again, δ1 and δ2 are assumed to have similar expansions in terms of ε and σ =

√
λ − λ0. Next U(t) and

V (t) are expanded in powers of σ about x0:

U(t) = x0 − [σu0(t) + σ 2u1(t) + O(σ 3)]

V (t) = x0 + [σv0(t) + σ 2v1(t) + O(σ 3)].

Transforming to s =
σ t
εT , substituting the corresponding expansions in the transition layer equations and matching orders by using the

scaling ε ∼ O(σ 2) gives the following equation for u0(s) = v0(s):

u′′

0(s) + 4Au0(s) − 4Bu3
0(s) = 0 (A.4)

where,

A = − [fλ0fxx0 + 2fxλ0] ; B =

[
1
2
f 2xx0 +

1
3
fxxx0

]
. (A.5)

Here, fx0 = fx(λ0, x0) and so on. Integral curves of (A.4) are given by:

1
2
u′

0
2
+ 2Au2

0 − Bu4
0 = C . (A.6)

Choosing C = A2(1 − η2)/4B and following the arguments in Section 3, one finds that the solution is given by the Jacobi elliptic function:

u0(s) =

√
A
B
(1 − η)sn

(√
A
2
(1 + η)s, k

)
(A.7)

where, k is the modulus of the Jacobi elliptic functions. The equations for u1(s) and v1(s) are:

u′′

1 + 4(A + 3u2
0B)u1 = −

4
3
Au′

0 − 4Bu2
0u

′

0 − D1η
2
− D2

u′′′

0

u′

0

v′′

1 + 4(A + 3u2
0B)v1 = −

4
3
Au′

0 − 4Bu2
0u

′

0 + D1η
2
+ D2

u′′′

0

u′

0

where

D1 =
A2c210
4B

fxx0; D2 =
Afxx0 − 2Bfλ0

4B
. (A.8)

which again can be solved, partly numerically and partly analytically. Expression for the period of the solution turns out to be

T = 2 + ε(2 + c12σ 2
+ O(σ 3)); c12 = −

4A
15

−
6A
5

η2 (K(k) − E(k))
(E(k) − ηK(k))

.

Appendix B. Numerical method

The numerical algorithm used for integrating singularly perturbed delay equations of the type considered in this article is an efficient
and accurate spectral method developed by Coutsias et al. [9,8] to integrate ordinary differential equations with rational function
coefficients. This section sketches the algorithm first [3] and then compares its accuracy, in obtaining periodic solutions to linear delay
equations and square wave SOPS to singularly perturbed delay equations, with that of RADAR5, a Runge–Kutta algorithm [12].

The method of Coutsias et al. [9,8] basically achieves efficient approximate inversion of linear differential operators with rational
function coefficients. It employs an expansion in terms of a large class of orthogonal polynomial families, including all the classical
orthogonal polynomials. These families obey a simple 3-term recurrence relation for differentiation, and hence the problem reduces
to solving such recurrence relations efficiently. Gautschi’s seminal paper on ‘‘Computational properties of three-term recurrence
relations’’ [11] gives a comprehensive account of the use of such equations and describes the algorithm – originally devised by J.C.P.
Miller [1] for the computation of tables of the modified Bessel function – for solving such recurrence relations. This algorithm, which uses
the technique of backward recurrence is extremely accurate as shown by Olver [25].

The algorithm is very well suited for delay equations of the form:

aẋ(t) + bx(t) = f (x(t − r), λ). (B.1)

When x(t) is expanded in terms of a suitable orthogonal polynomial family over an interval of length r , the linear differential operator
on the left hand side transforms to a tri-diagonal matrix operating on the mode-space coefficients of x. The right-hand side of the above
equation, although nonlinear, is completely known as the solution for the previous interval of length r is assumed known. Thus in the
mode-space, Eq. (B.1) reduces to an inhomogeneous three term difference equation, which can be solved. Having obtained the solution
on an interval say [rn, r(n + 1)], the process can be repeated to obtain the solution on [r(n + 1), r(n + 2)] by substituting the previously
obtained solution in the right hand side of (B.1).
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B.1. The algorithm

Here we sketch the key steps involved in this algorithm.We use the Chebyshev polynomials, Tn(x), that are orthogonal on [−1, 1] over
the weight (1− x2)−1/2, for the expansions. Then solving the delay equation of the form (B.1), essentially reduces to solving the following
ordinary differential equation

aẋ(t) + x(t) = f (t), −1 ≤ t ≤ 1, x(−1) = x0. (B.2)

Expanding each term of above equation in terms of Chebyshev polynomials gives,

x(t) =

N∑
n=0

x(0)
n Tn(t), ẋ(t) =

N∑
n=0

x(1)
n Tn(t), f (t) =

N∑
n=0

fnTn(t).

N , the resolution or the point of truncation in the sum above is decided by the level of accuracy required, which in turn is decided by the
stiffness of the equation one wishes to solve. The spectral method determines the expansion coefficients directly, fromwhich the solution
can be computed at any point t in the interval. Next we choose the Chebyshev grid for the points space, tm = cos(mπ/N), so that each
expansion reduces to a cosine discrete Fourier transform, since Tn(cos(mπ/N)) = cos(nπm/N). Finally using a recurrence relation for the
Chebyshev polynomials and the fact that they form a complete basis, one can obtain the following difference equation for the expansion
coefficients x0n:

cn−1x
(0)
n−1 + 2anx(0)

n − x(0)
n+1 = cn−1fn−1 − fn+1; n = 1, 2, . . . ,N (B.3)

where, c0 = 2, cn = 1 for n = 1, 2, . . . ,N and fN+1 = x(0)
N+1 = 0. The homogeneous part of Eq. (B.3) is precisely the three-term recurrence

relation obeyed by Bessel functions.
The solution to Eq. (B.3) can be written in terms of a homogeneous solution and a particular solution. The homogeneous solution is a

linear combination of a minimal solution and a dominant solution denoted by yn and Yn respectively. They can be obtained by defining the
ratios, rn =

yn+1
yn

→ 0 and Rn =
Yn+1
Yn

→ ∞ as n → ∞ and solving for them by writing the homogeneous form of (B.3) in terms of them:

rn−1 =
1

2an + rn
; Rn = −2an +

1
Rn−1

. (B.4)

Thus rn can be obtained using a backwards recursion, by assuming rν = 0 for some ν > N . By doing this, any error corresponding to
triggering the dominant solution dies out quickly. Once all the ratios are found, the minimal solution can be obtained up to a normalising
factor.
Since the dominant and theminimal solution should be linearly independent, the starting value R0 for this forward recursion is determined
by requiring that the vector (Y0, Y1) be orthogonal to (y0, y1), which leads to R0 = −1/r0.

Next, the full solution to (B.3) can be written in the form,

x(0)
n = zn + Ayn; n = 0, 1, . . . ,N. (B.5)

Here, zn = Anyn + BnYn is the particular solution. Redundance in the determination of An and Bn allows one to rewrite Eq. (B.3) in terms of
un = Anyn and vn = BnYn as [3],

un = un−1rn−1 − τn; vn = vn−1Rn−1 + τn; τn =
fn

Rn − rn
(B.6)

u0 can be chosen arbitrarily and un could be determined. However, since its calculation involves Rn, vn must be found in a numerically
stable manner by solving the recursion relation backwards by setting vν = 0, for the same ν as in the solution of yn. Finally the constant
A in (B.5) is found using the initial condition,

x0 =

N∑
n=0

(−1)nxn(0) . . . Tn(−1) = (−1)n. (B.7)

Upon obtaining x̂(0), the solution x(tn) is obtained by taking the inverse Fourier transform.

B.2. A comparison

Currently the numerical schemes used most often to integrate delay-differential equations involve standard time-stepping methods
with adaptive stepsize control. This section compares the accuracy of the spectral method with that of RADAR5, a fifth order Runge–Kutta
method with adaptive step-size control [12,4], to integrate (a) linear delay equations, whose exact solutions are known and (b) stiff delay
differential equations such as the singularly perturbed delay differential equation considered in this article.
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Table B.1
The difference (∆1 and ∆2) between the numerical solutions (using the spectral method) and analytic solutions to Eqs. (B.9) and (B.10) respectively, after over a million
iterations

Resolution Error in the numerical solution
∆1 ∆2

8 0.626 E−06 0.261E−04
16 0.486 E−10 0.213 E−08
.
.
.

.

.

.
.
.
.

1024 0.490 E−10 0.212 E−08

Table B.2
The difference between the analytical solution and the numerical solution obtained using RADAR5, to Eqs. (B.9) and (B.10) for several tolerances

Relative tolerance Maximum step-size Cumulative error in x1 (t = 106) Maximum step-size Cumulative error in x2 (t = 106)

1.0 E−07 0.01 0.911 E−04 0.1 0.160 E−02
1.0 E−09 0.1 0.667 E−04 0.1 0.126 E−03
1.0 E−11 0.1 0.110 E−04 0.1 0.448 E−05
1.0 E−13 0.1 0.084 E−04 0.1 0.552 E−05

B.2.1. Linear delay equations
We consider the linear delay equations of the following form:

ẋ(t) + αx(t) + βx(t − r) = 0; t ≥ 0. (B.8)

The following two choices of parameter values yield stable periodic solutions to this equation, such that the corresponding characteristic
equation has exactly two purely imaginary roots while the other roots have negative real parts.

• α = −1, β =
√
2 and r = π/4. The general solution is a linear combination of sin(t) and cos(t). Specifically we solve the following

equation with sin(t) as a solution using both numerical schemes.

dx1
dt

= x1(t) −
√
2x1

(
t −

π

4

)
; t ≥ 0 (B.9)

with, x1(t) = sin(t); t ∈ [−π/4, 0].

• In the previous example, the period of the solution is 2π which is commensurate with the delay. This restriction is taken out in this
example by choosing α = −1, β =

√
3 and r =

tan−1(
√
2)

√
2

. The general solution in this case is a linear combination of sin(
√
2t) and

cos(
√
2t) and in particular sin(

√
2t) is chosen for the computation.

dx2
dt

= x2(t) −
√
3x2(t − r); t ≥ 0; r =

tan−1(
√
2)

√
2

(B.10)

with x2(t) = sin(
√
2t); t ∈ [−r, 0].

Table B.1 shows the error in the numerical solution of Eq. (B.8) at t = 106, obtained using the spectral scheme outlined above. Note that
the integration is done in steps of the delay which is less than 1, hence the number of times the equation is integrated is over a million.

Table B.2 gives the errors in the numerical solutions (x1, x2) of Eq. (B.8) for the two sets of parameters mentioned above, obtained using
RADAR5 for different values of the relative tolerance. The maximum allowed step-size mentioned below is the optimal value for each
tolerance, that balances the size of the error and the total number of function calculations.

B.2.2. Singularly perturbed delay differential equation
Now we take the following singularly perturbed delay differential equation considered in this article

εẋ(t) = −x(t) + λx(t − 1)(1 − x(t − 1)) (B.11)

and integrate it, using both the spectral method and RADAR5 for a million intervals. An asymptotic form of a slowly oscillating periodic
solution over a single interval, obtained after integrating (B.11) over 10000 intervals using the spectral method, is used as the initial
function for both methods. Then, for each method, we calculate the phase error, ∆Φ , defined as:

∆Φn = |tn − t ′n|; n = 1, 101, 201, . . . (B.12)

where tn are the values of every hundredth time instances at which the numerical solutions cross x0, the unstable fixed point of the map,
and t ′n = t1 + (n − 1)T/2, with T being the asymptotic expression for the period of the solution given in (44):

T ≈ 2 + 2ε
(
1 −

4
15

σ 2
+ O(σ 3)

)
. (B.13)

The slowly oscillating periodic solution of Eq. (B.11) becomes square-wave like when ε = O(σ 2) or smaller. Hence the transition layers
in the solution become sharper and hence the solution becomes stiffer as ε decreases. Since the asymptotic expression for the period is
known only up to O(σ 2), an inherent, minimum phase error of O(εσ 3) is introduced over each cycle in these computations.

Please cite this article in press as: M.H. Adhikari, et al., Periodic solutions of a singularly perturbed delay differential equation, Physica D (2008),
doi:10.1016/j.physd.2008.07.019



ARTICLE  IN  PRESS
14 M.H. Adhikari et al. / Physica D ( ) –

Fig. B.1. Plot of the phase error in the integration of Eq. (B.11) by RADAR5 and the spectral method. Here σ = 0.01 and ε = 5.0E−4 for the left figure and ε = 1.0E−4
for the right one. The solid red curve, εσ 4t , is shown for comparison. The spectral method tracks the phase almost exactly; the error is of the same order as the error in the
analytical formula itself.

Fig. B.1 shows the comparison plots of the phase error obtained by the spectral method and RADAR5 for ε = 5.0E−4 and 1.0E−4 with
σ = 0.01. The resolution for the spectral method, in both cases was 8192. Amaximum stepsize of 1.0E−4was set for RADAR5 and a dense
output obtained at an interval of size 1.0E−5 was used to find the values of tn. As the figure shows, the spectral method tracks the phase
of the SOPS almost exactly, hence, the error is of the same order as the error in the analytical formula itself. The phase error calculated
by RADAR5 fluctuates and the difference between tn and t ′n changes sign which causes the spikes observed in the figure. Hence, it is the
maxima that give an estimate of the error bar associated with that calculation.

Appendix C. Numerical algorithm to calculate u1c

Here, we give the numerical algorithm we use to calculate u1c by integrating equation (47) which is of the form:

y′′(t) + f (t)y(t) = g(t) (C.1)

where f (s) and g(s) are periodic functions of t of known period T . We solve this equation on [0, T ) in MATLAB using the following steps:

• Since the differential operator in this case consists of periodic coefficients, we use Fourier transform on a equally spaced grid over the
period T :

f (tl) =
1
N

N/2∑
m=−N/2+1

f̂me2π ilm/N
; g(tl) =

1
N

N/2∑
m=−N/2+1

ĝme2π ilm/N (C.2)

and,

y(tl) =
1
N

N/2∑
m=−N/2+1

ŷme2π ilm/N
; tl =

l
N
T ; l = 0, 1, . . . ,N − 1. (C.3)

• Multiplying f (t) and y(t) gives a convolutionmatrix, which is a ((2N−1)×N)matrix of Fourier coefficients of f (t) and acts on a column
vector of ŷms of length N . Further, in the mode space y′′(t) can be represented as a (N × N) diagonal matrix D̂ and g(t) is represented
by a column vector of ĝms of length N . We crop the convolution matrix so as to form a (N ×N) toeplitz matrix Ĉ to write the equation:[

−4π2

T 2
D̂ +

Ĉ
N

]
Ŷ = Ĝ. (C.4)

Here, the coefficients in the column vector Ŷ and Ĝ are re-ordered to be consistent with Ĉ .
• Next, we use the initial condition y(0) = a:

1
N

N/2∑
m=−N/2+1

ŷm = a. (C.5)

Thus we add a row of ones to the square matrix on the left hand side of Eq. (C.4), and add the entry a to the column on the right hand
side.

• Finally, we solve the resultingmatrix equation of the form AX = Bwhere A is ((N+1)×N) and B is a column vectorwith N components,
by using the ‘‘mldivide’’ function or the ‘‘\’’ operator in MATLAB. X = A \ B is the solution in the least square sense to the under- or
overdetermined system of equations AX = B. In other words, X minimizes the norm(A ∗ X − B), the length of the vector AX − B.
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