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Abstract

Protein loops are often involved in important biological functions such as molecular recognition,

signal transduction, or enzymatic action. The three dimensional structures of loops can provide

essential information for understanding molecular mechanisms behind protein functions. In this

paper, we develop a novel method for protein loop modeling, where the loop conformations are

generated by fragment assembly and analytical loop closure. The fragment assembly method

reduces the conformational space drastically, and the analytical loop closure method finds the

geometrically consistent loop conformations efficiently. We also derive an analytic formula for the

gradient of any analytical function of dihedral angles in the space of closed loops. The gradient

can be used to optimize various restraints derived from experiments or databases, for example

restraints for preferential interactions between specific residues or for preferred backbone angles.

We demonstrate that the current loop modeling method outperforms previous methods that employ

residue-based torsion angle maps or different loop closure strategies when tested on two sets of loop

targets of lengths ranging from 4 to 12.

Title running head: Protein loop modeling

Keywords: Loop modeling, Protein structure prediction, Fragment assembly method, Analytical loop clo-

sure, Loop ensemble
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I. INTRODUCTION

Prediction of the native structure of a protein from its amino acid sequence is one of the

most important problems in protein science. However, modeling the native structure based

solely on physico-chemical energy functions remains an unsolved problem [1–3]. Therefore,

bioinformatics approaches that utilize information extracted from the database of known

structures are widely used in practice. When experimental structures of homologous se-

quences are available, these structures can be used as templates [4, 5]. However, homologous

proteins still have gaps or insertions in sequences, referred to as loops, whose structures are

not conserved during evolution. Since the templates give no structural information on these

regions, the loops have to be modeled ab initio.

Although the length of a loop region is generally much shorter than that of the whole

protein chain, modeling a loop poses a challenge not present in the global protein structure

prediction, in that the modeled loop structure has to be geometrically consistent with the rest

of the protein structure obtained from templates. However, no general motifs are available

for modeling loops, other than the steric restraints imposed by the presence of the rest of the

protein structure and the requirements on backbone bond lengths and bond angles to have

values close to the canonical ones. The latter conditions that have to be satisfied when a loop

bridges the two ends of a fixed geometry are referred to as the “loop closure constraints”. In

many loop modeling methods developed so far, conformations are generated without explicit

loop closure constraint. The gap in the chain is reduced afterwards either by screening out

conformations with large gaps or by minimizing an energy term penalizing the gap [6–13].

On the other hand, conformations satisfying the loop closure constraint can be generated

by using analytical loop closure [14–24]. Among these methods, the polynomial formulation

developed in Ref. [20, 21] has the combined advantage of simplicity and generality, and can be

applied to closing loops by rotation of torsion angles of non-consecutive residues. Numerical

loop closure methods have also been developed [25–27]. An analytical loop closure approach

is natural and efficient in that minimization of an arbitrary gap penalty is unnecessary since

loops are restricted to be closed in a purely geometric way, and there is no small remaining

chain break that needs to be ignored or reduced afterwards. In a sampling test on thirty

loop targets of lengths ranging from four to twelve residues and an optimization test on an

eight-residue loop, it was shown that loop sampling can be performed much more efficiently
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when analytical loop closure is employed [20].

The loop conformational space can be further reduced by using fragment assembly. Frag-

ment assembly methods have been applied widely and successfully to protein structure

prediction when structural templates are not available [13, 28–43]. In a fragment assembly

method, local structures are limited to those of short fragments collected from a structure

database, and the global structure is modeled by searching for the lowest free energy state

among the states with such local structures.

In this work, we combine the two approaches, analytical loop closure and fragment as-

sembly, for efficient protein loop sampling. Since an initial loop conformation generated by

fragment assembly alone does not close the loop in general, certain backbone torsion angles

are perturbed so that the analytical loop closure equation is satisfied. A measure of devia-

tion from Ramachandran-allowed regions can be minimized at the same time to confine the

angle changes that accompany loop closure within a desired range. In order to perform this

task efficiently, we develop an analytic formula for the gradient of a function of backbone

dihedral angles in the space of closed loops.

Prediction results on eight short protein loops using a preliminary version of the current

method was reported in Ref. [28], where a Monte Carlo search was used to find conformations

minimizing a deviation from the original fragment angles. In this work, by developing a

general formula for the analytic gradient of a function of dihedral angles that satisfy the

loop closure constraint, such minimization can be performed much more efficiently.

A related approach that couples analytical loop closure with the Rosetta method was

reported to produce high-accuracy protein loop structures [24]. In their approach, the

conformational sampling stage is intimately tied with the Rosetta energy function, but here

we focus more on the conformational sampling method. Our sampling method is different

from that in Ref. [24] in that (1) the connecting regions of fragments are ensured to represent

conformations in the database by a smooth fragment assembly method, and (2) the backbone

angles altered by loop closure are guided to the Ramachandran-allowed regions by a restraint

function minimization with the newly developed analytical gradient, while in Ref. [24] an

ensemble of consistent backbones is constructed and Ramachandran inconsistent loops are

simply discarded.

We demonstrate the performance of our method by loop reconstruction tests on the 30

loops proposed by Canutescu and Dunbrack [27] and the 317 loops developed by Fiser et
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al. [44]. We found that the sampling efficiency is significantly improved compared to four

different previous methods [7, 20, 27, 45]. By combining our sampling method with a

statistical potential DFIRE [46, 47] the loop prediction accuracy could also be improved.

II. METHODS

A. Collection of Fragments and Structure Database

For each residue of a target loop, a seven-residue window centered on the residue is

considered. For each window, two hundred fragment structures of length seven with similar

sequence features are collected from a non-redundant structure database, as described below.

The structure database was constructed by clustering an ASTRAL SCOP (version 1.63) set

so that no two proteins in the database have more than 25 % sequence identity with each

other [48–50]. In order to perform a fair benchmark test, we did not use fragments obtained

from proteins homologous to the target proteins in this work. To elaborate, we removed the

proteins with E-values less than 0.01 after a BLAST search [51] with the whole sequence

containing the target loop.

The sequence features to be compared for fragment selection are the sequence profiles

obtained from a PSI-BLAST search. A sequence profile is a set of position-dependent muta-

tion probabilities of the protein residues to other amino acids, obtained from local alignment

of a given sequence with related sequences in a sequence database. The PSI-BLAST profile

contains evolutionary information that cannot be obtained directly from the raw sequence,

and it has been widely used for local structure prediction [49, 50, 52] as well as for global

structure prediction by fragment assembly methods [13, 28, 30–43].

Since we consider windows of size seven, the sequence features for each window form a

matrix of size 7×20. The distance between two sets of sequence features A and B is defined

as

DAB =
7∑

i=1

20∑

j=1

wi|P (A)
ij − P

(B)
ij |, (1)

where P
(A)
ij is a component of the sequence feature set A, and wi is a weight parameter.

Since the end-regions of a fragment is often cut off during fragment assembly, as explained

in the next subsection, the structure of the central region is more frequently used. We thus
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place higher weight on the central region by using the formula

wi = i(8− i). (2)

Two hundred fragments of seven residues that have the shortest distances from the target

loop sequence for each window are then collected for fragment assembly. It must be noted

that for the terminal residues of the loop, the windows contain residues in the framework re-

gion. Therefore, the sequence features used for collecting the fragments contain information

on the framework region as well.

B. Fragment Assembly for the Loop Region

The fragments obtained as above are assembled to construct loop conformations. For

a loop of length L, conformations of length L + 8 were generated to utilize information

in the fragments including framework residues. The structures outside the loop region are

discarded in the subsequent analysis.

Fragments are joined only when they overlap and share at least one residue with close

backbone dihedral angles. Two sets of dihedral angles (ϕ1, ψ1) and (ϕ2, ψ2) in each of the

two fragments are considered to be close if

|ϕ1 − ϕ2|+ |ψ1 − ψ2| ≤ 30◦. (3)

If we find such a residue pair in two fragments, the second fragment is joined to the first

one starting from that residue [37–43]. Since the joining usually occurs in the middle of

fragments, only parts of the 7-residue-long fragments are used in the assembly as a result.

The average length of inserted fragments by the current method is 1.9 for the conformations

generated for the Fiser loop set [44], as can be seen from Table I. The average value for

each loop length is also given in the table, and one can see that the sizes of the inserted

fragments do not depend much on the target length.

Although the conformational space of the assembled fragments is a finite set, it is too large

for exhaustive enumeration. A random sampling method tested in this study performs very

well for the sizes of the loops considered here (up to 12 residues), as presented in Results and

Discussion. A set of 5000 conformations was generated for each loop target in the Canutescu
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and Dunbrack set to compare with several previous methods. Initial 4000 conformations were

generated for the test on the Fiser set [44], out of which a final set of 1000 conformations were

selected after a screening procedure to compare with the RAPPER method [7]. There is no

difficulty in increasing the number of sampled conformations because the whole procedure is

very efficient, and the method may also be combined with more extensive search methods,

especially for loops longer than those considered here.

C. Analytical Loop Closure and Analytical Gradient

Conformations for a protein loop generated by the fragment assembly method alone do

not satisfy the loop closure constraint in general. Therefore, the backbone torsion angles

of the loop must be rotated so that the loop structures correctly fit into the rest of the

protein structure. The minimum number of backbone torsion angles that has to be rotated

for loop closure is six. However, if only six angles are rotated, the changed angles may

deviate from the initial fragment angles significantly or may even fall into Ramachandran-

disallowed regions in some cases, depending on the initial conformation. Such a problem

can be alleviated by distributing the torsion angle changes from the initial six angles to

all the available torsion angles, resulting in small changes for many angles instead of large

changes for a few. Here we distribute the angle changes by minimizing a measure of deviation

from Ramachandran-allowed regions in the space of closed loop conformations, as described

below. The CCD method [27] also allows for imposition of constraints of Ramachandran

maps during the iterative numerical loop closure algorithm and is compared with the current

method in the Results and Discussion.

The loop closure procedure adopted in this work is as follows. First, we perform initial

loop closure by randomly selecting three residues and compute their six backbone dihedral

angles (three ϕ and three ψ angles) by solving the analytical loop closure equation [20, 21].

We then adjust all the torsion angles simultaneously to minimize the following measure for

deviation from Ramachandran-allowed regions

FRama =
n∑

l=1

fRama(ϕl, ψl) (4)

under the loop-closure constraint, where fRama(ϕ, ψ) is an energy function for a residue that
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represents a Ramachandran plot, and n is the number of loop residues that are neither

glycine nor proline. The function fRama(ϕ, ψ) consists of the Lennard-Jones and Coulomb

interactions among the non-side chain atoms within a dipeptide, as described in Ref. [53].

We allowed free changes for the glycine angles because of their flexibility and fixed proline

angles at the fragment angles because of the ϕ angle rigidity. Separate fRama functions for

glycine, proline, and pre-proline residues such as in Ref. [54] may also be used if desired.

Minimization of the function FRama enforces the torsional angles to lie within the allowed

regions of the Ramachandran map for each residue.

A formula for the gradient of FRama is developed below, and a gradient-based quasi-

Newton optimization method, L-BFGS-B [55], was used to minimize FRama efficiently.

Among the N variable torsion angles, {φ1, φ2, φ3, · · · , φN−1, φN}, only N − 6 of them are

independent, the remaining 6 angles being determined by the loop closure condition. The

N − 6 independent angles are called driver angles, and the remaining 6 angles are called

adjuster angles. To simplify the discussion, we choose {φ7, φ8, · · · , φN} as the driver angles,

and {φ1, φ2, · · · , φ6} as the adjuster angles. Then {φ1, φ2, · · · , φ6} are functions of the driver

angles {φ7, φ8, · · · , φN}, and minimization of FRama is performed in a (N − 6)-dimensional

conformational space described by these driver angles.

To elaborate, let us denote the axis of φi-rotation by a unit vector Γi, and label the atom

at the N-terminal of the rotation axis by i, as depicted in Fig. 1. For any atom j located

in the C-terminal direction of the chain relative to the atom i, the variation of its position

dRij due to an infinitesimal change of φi, dφi, is given by

dRij = dφi (Γi ×Rij) , (5)

where Rij is the position of the atom j relative to i.

Since the Cartesian coordinates of atoms in the framework region, the region outside the

loop, are fixed under the loop closure constraint, dRj =
∑

i dRij = 0 for any atom j in

the framework. In the current convention, the framework region at the N-terminal side of

the loop is unaffected by the change of loop dihedral angles, and the C-terminal framework

moves as a rigid body in the absence of the loop closure constraint. It is therefore necessary

and sufficient to impose the following constraint for three distinct atoms A, B, and C in the
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C-terminal framework region:

dRj =
N∑

i=1

dRij =
N∑

i=1

dφi (Γi ×Rij) = 0 (j = A,B, C). (6)

Eq. (6) is a constraint on possible changes of the torsion angles dφi under the loop closure

constraint. Considering i (= 1, · · · , N) as the column index and j (= A,B, C) together with

the space index µ (= x, y, z) as the row index α (= 1, · · · , 9), the matrix

Miα ≡ (Γi ×Rij)µ (α = (j, µ)) (7)

is a 9 × N matrix, and Eq. (6) is a system of 9 equations for N variables. However, it has

to be noted that

(Rj −Rk) · (Γi × (Rij −Rik)) = Rjk · (Γi ×Rjk) ≡ 0 (j, k = A, B, C) (8)

which amounts to 3 identities among the 9 rows of Miα. These identities show that the

distances between atoms A, B, and C are preserved,

d||Rij −Rik||2 = (Rj −Rk) · (dRij − dRik) ≡ 0 (j, k = A,B,C) (9)

when dRi’s are given by the rotation Eq. (5). Due to the three identities in Eq. (8), any 3

rows of Miµ can be expressed as linear combinations of the remaining 6 rows, and Eq. (6) is

reduced to a system of 6 independent equations for N variables. Therefore, Eq. (6) can be

used to express the change of the adjuster angles dφ1, · · · , dφ6 for an arbitrary perturbation

of the driver angles dφ7, · · · , dφN .

Expressing Eq. (6) in terms of the driver angle perturbations, we get

dRj =
N∑

i=7

dφi

(
Γi ×Rij +

6∑

k=1

∂φk

∂φi

Γk ×Rkj

)
= 0 (j = A,B,C). (10)

The derivative of the adjuster angles with respect to the driver angles ∂φk/∂φi can then be
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obtained from the following linear equation:




Γ1 ×R1A Γ2 ×R2A · · · Γ6 ×R6A

Γ1 ×R1B Γ2 ×R2B · · · Γ6 ×R6B

Γ1 ×R1C Γ2 ×R2C · · · Γ6 ×R6C







∂φ1/∂φi

∂φ2/∂φi

...

∂φ6/∂φi




= −




Γi ×RiA

Γi ×RiB

Γi ×RiC




(i = 7, · · · , N).

(11)

For simplicity, we use N, Cα, and C′ atoms of the first residue in the C-terminal frame-

work region as the three atoms A, B, and C, and solve Eq. (11) to obtain ∂φk/∂φi

(k = 1, · · · , 6; i = 7, · · · , N) as a function of φi (i = 7, · · · , N). The analytic form of

the gradient for the function FRama in the space of closed loops is then:

(
∂FRama

∂φi

)

closed loop
=

∂FRama

∂φi

+
6∑

k=1

∂FRama

∂φk

∂φk

∂φi

(i = 7, · · · , N). (12)

The function FRama can be replaced by any analytic function of the backbone torsion angles

to give an analytic gradient formula for a general case.

D. Screening of the Sampled Loop Conformations

After the loop closure, a screening procedure is performed for the Fiser loop set to compare

with the results of RAPPER [7]. In the RAPPER program, each residue is sampled in the

space of a fine-grained ϕ/ψ map obtained from the Ramachandran plot, and conformations

that have steric clashes or that are impossible to satisfy loop closure are discarded during

the loop building process [7]. Since we have not considered possible steric clashes for the

loop conformations so far, we apply a screening step for a fair comparison.

We employ the DFIRE potential [46], which has been derived from the distribution

of inter-atomic distances found in a structure database and thus takes steric clashes into

account effectively. Because the screening is performed before the side chain atoms are

constructed, side chain atoms beyond Cβ atoms are not included for score calculation, and

we call the score DFIRE-β.

It is not possible for us to simply estimate the fraction of the discarded loops during

sampling by RAPPER, but we found that if we select 1000 out of 4000 sampled conforma-

tions, more native-like conformations than the 1000 conformations sampled by RAPPER
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are obtained, as presented in Results and Discussion. In this four-fold sampling, only three

quarters of the conformations are discarded, and this fraction is expected to be much smaller

than the actual fraction of the conformations discarded in RAPPER due to steric clashes

and impossibility of loop closure, which disfavors us in comparison.

E. Construction of the Side Chains and Final Section of the Model Structure

Although the new developments in this work mainly involve loop sampling, the current

method by itself can be combined with pre-existing scoring functions to provide predicted

loop structures. We present a model selection procedure here to illustrate such an applica-

tion.

Since the fragments are collected from proteins whose sequences are different from that

of the query, only backbone dihedral angles are obtained from the fragments. With back-

bone fixed, the optimal side chain conformations are constructed by selecting the side chain

dihedral angles from Dunbrack’s backbone-dependent rotamer library [56]. Possible side

chain conformations are finite combinations of rotamers, and the exact global minimum of a

free energy function can be found using an efficient optimization algorithm based on graph

theory [57], where the free energy function of SCWRL 3.0 is used, consisting of a one-body

term proportional to the log of the rotamer probability and steric repulsions with backbone

and other side chain atoms [58].

The final model structures are selected from the conformations generated for the Fiser

loop set using the DFIRE potential [46, 47] again, now in the all-atom form. DFIRE has

been shown to be as successful in scoring loop decoy conformations as the force fields such

as AMBER or OPLS with generalized Born solvation free energy [59, 60].

III. RESULTS AND DISCUSSION

A. Loop Conformation Sampling

The loop sampling method developed here that combines fragment assembly and analyt-

ical loop closure (FALC) was applied to the 30 loop targets of lengths 4, 8, and 12 residues

proposed by Canutescu and Dunbrack [27]. The loop set, chosen from a set of nonredun-

dant X-ray crystallographic structures, was used to test the performance of several loop
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sampling algorithms including the Cyclic Coordinate Descent (CCD) algorithm [27] and the

self-organizing algorithm (SOS) [45]. CCD is a robust iterative loop closure algorithm. It

can be coupled with Ramachandran probability maps in a Monte Carlo fashion, resulting in

preferential sampling in the Ramachandran maps. A recent loop construction method called

self-organizing algorithm (SOS) iteratively superimposes small, rigid fragments (amide and

Cα) and adjusts distances between atoms to satisfy loop closure and to consider steric con-

ditions simultaneously. This method was reported to outperform the CCD method [45]. We

previously tested a method that samples φ/ψ angles from Ramachandran maps using PLOP

(Protein Local Optimization Program) [8] and closes the loop with analytical loop closure

on the same loop set. This method, called CSJD in Ref. [20], is also compared together.

For each of the loops in the test set, the minimum backbone RMSDs from the crystal

structure among 5000 conformations sampled by the following five methods are compared

in Table II: the Ramachandran map CCD (from Table 2 of Ref. [27]), the CSJD method

(from Table 1 of Ref. [20]), the SOS algorithm (from Table 1 of Ref. [45]), and the current

methods (FALC and FALCm). In Table II, ‘FALC’ refers to the results of the loop closure by

rotating six random torsion angles after fragment assembly, and ‘FALCm’ to the results of

the gradient minimization after FALC, as described in Methods. Both FALC and FALCm

perform better than CCD, CSJD, and SOS. In particular, our algorithms perform better

than SOS in all 10 8-residue loop targets and 8 out of 10 12-residue loop targets. With the

FALC method, the minimum RMSD improves from 1.19 Å to 0.78 Å and from 2.25 Å to

1.84 Å on average for the 8-, and 12-residue loops, respectively. The FALCm method show

further improvements over the FALC method for the 8- and 12-residue loops from 0.78 Å to

0.72 Å and from 1.84 Å to 1.81 Å.

The current method is different from the Ramachandran map CCD method in two re-

spects. First, the local backbone torsion angles are sampled in the fragment space here, but

they are sampled from Ramachandran probability maps in CCD. Ramachandran probability

maps contain information specific to the amino acid types only, but fragments obtained from

the PSI-BLAST profiles provide sequence-specific information. Second, the loop closure is

performed analytically here, but an iterative method is used in CCD.

The differences between the current method and the SOS method are also two-fold. First,

the small fragments (amide and Cα) employed in SOS are chosen to satisfy local geometric

constraints, but the fragments used here contain additional information on the sequence-
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specific conformational preferences that encompass the length of several residues as well as

local geometry. Second, loop closure is accomplished by iterative distance adjustments in

SOS but by a single step of analytical loop closure here.

We argue that the excellent performance of the current loop sampling method originates

from both fragment assembly and analytical loop closure. The fact that the CJSD method

shows better performance than the Ramachandran CCD, as presented in Table II, implies

that analytical loop closure has an advantage over CCD. In addition, the fact that the

current methods (FALC and FALCm) give better results than the CSJD method and SOS

demonstrates the effectiveness of the current fragment assembly method.

CCD has been used with Rosetta for modeling structurally variable regions in homology

modeling [13], and analytical loop closure combined with Rosetta has been employed for loop

reconstruction tests [24] showing substantial improvement in performance over the CCD-

based Rosetta protocol. It would be also promising to combine the current loop sampling

method with an accurate energy function and an efficient global energy optimization method

in the future.

Application of the target function minimization in analytical loop closure, referred to

as FALCm here, improves the loop sampling results for the 8- and 12-residue loops, as

discussed above. The improvement is not dramatic probably because it is more probable to

close the loop with resulting angles in Ramachandran-allowed regions when more native-like

angles are assembled from fragments in the initial stage. The analytical gradient formula

still has a wide potential area of applications, for example in guiding loop sampling with

target functions that favor hydrogen bonding to specific functional groups in protein-ligand

binding problems or that favor interactions with known or predicted hot spot residues in

protein-protein binding problems.

B. Loop Ensemble Generation with Screening

In order to test the feasibility of the application of the current method to loop ensemble

generation, we carried out a loop reconstruction test on a set of loop targets developed by

Fiser et al. [44]. The original set consists of loops of lengths ranging from 2 to 12, but we

omit the shortest (and the easiest) loops of 2 and 3 residues. The resulting set consists of

317 targets, as shown in Table III.
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The results of loop ensemble generation are displayed in Table III with the results of

RAPPER reported in Table 3 of Ref. [7]. The minimum main chain RMSD and the average

main chain RMSD of the 1000 conformations, obtained after screening 4000 conformations

sampled by FALCm, were examined for each target, and their average values Rave and

Rmin are displayed for each loop length. The main chain RMSD was calculated using the

coordinates of N, Cα, C′, and O atoms, following Ref. [7].

In the ensemble generation test by RAPPER, 1000 conformations were generated screen-

ing out loops with possible steric clashes or with too extended conformations for loop closure

during the loop building process. Although it is not possible for us to accurately estimate

the fraction of the loops that were screened out in the RAPPER program, the fraction must

be much larger than 3/4, considering the probabilities of typical loop closure and steric

clash.

The performance of our method in generating native-like conformations are significantly

better than RAPPER, both in Rave and Rmin, as can be seen from Table III. There are more

improvements for longer loops, especially in the minimum RMSD. It has to be noted that

only a four-fold random sampling was performed for an illustrative comparison. The success

of this simple application shows the potential of the current method for loop ensemble gen-

eration enriched with native-like conformations when combined with more conformational

search and more extensive use of good scoring functions [8, 61].

C. Loop Model Selection with DFIRE

From the ensemble of 1000 conformations generated for each target in the Fiser set, the

final model was selected by scoring the conformations with the DFIRE potential after side

chain optimization, as presented in Methods. As compared in Table IV, the accuracy of

the loop model prediction is improved significantly compared to that reported in Ref. [47]

in which the RAPPER ensembles are also scored with DIFRE. This result demonstrates

that the better-quality conformational ensembles obtained by this study can lead to higher

modeling accuracy.
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IV. CONCLUSION

In this paper, we presented a novel method for protein loop sampling, based on fragment

assembly and analytical loop closure. Efficient sampling is possible because the search space

is drastically reduced by sampling in the space of closed loops and in the space of fragments

obtained by utilizing sequence-specific information.

We also developed an analytic formula for the gradient of a target function that depends

on a set of torsion angles satisfying the loop closure constraint. This gradient can be used

for efficient sampling of closed loops satisfying an additional requirement of optimizing a

target function.

The efficiency of our sampling method was demonstrated by performing loop reconstruc-

tion tests on two sets of loop targets whose lengths range from 4 to 12. We found that the

ability of our method for generating native-like conformations is significantly better than

the previous methods based on amino acid-specific information only and less elaborate loop

closure methods. It is remarkable that such a result can be obtained when no or minimal

level of energy information is used in the loop ensemble generation.

One notable feature of our method is that sampling and scoring procedures are separated.

Given the efficiency of our method in generating native-like conformations, the current

method would also be useful for testing discriminatory powers of various scoring functions

and developing a new one.

Although the current tests were restricted to the loop reconstruction problem, where the

framework region is fixed to the experimentally determined native structure, the efficiency of

the current sampling method would allow application to a more challenging task of modeling

loops in the context of the comparative modeling problem, where the framework region is

given by templates and therefore contain inherent uncertainties.
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FIG. 1: The displacement of an atom j, dRj , when the torsion angle about the axis Γi changes by
a small amount dφi is dRj = dφi (Γi ×Rij).

TABLE I: The average insertion length of fragments in loop construction of the Fiser loop set for
each target loop length

Loop length 4 5 6 7 8 9 10 11 12 Average

Insertion length 1.5 1.5 1.9 1.9 2.0 1.9 1.9 2.0 2.0 1.9
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TABLE II: The minimum backbone RMSD values of the loops sampled by CCD, CJSD, SOS, and
by the methods developed here, FALC and FALCm.

Loop CCDa CJSDb SOSc FALCd FALCme

1dvjA 20 0.61 0.38 0.23 0.34 0.39

1dysA 47 0.68 0.37 0.16 0.17 0.20

1eguA 404 0.68 0.36 0.16 0.22 0.22

1ej0A 74 0.34 0.21 0.16 0.16 0.15

1i0hA 123 0.62 0.26 0.22 0.09 0.17

4-residue 1id0A 405 0.67 0.72 0.33 0.20 0.19

1qnrA 195 0.49 0.39 0.32 0.23 0.23

1qopA 44 0.63 0.61 0.13 0.28 0.30

1tca 95 0.39 0.28 0.15 0.08 0.09

1thfD 121 0.50 0.36 0.11 0.21 0.21

Average 0.56 0.40 0.20 0.20 0.22

1cruA 85 1.75 0.99 1.48 0.60 0.62

1ctqA 144 1.34 0.96 1.37 0.62 0.56

1d8wA 334 1.51 0.37 1.18 0.96 0.78

1ds1A 20 1.58 1.30 0.93 0.80 0.73

1gk8A 122 1.68 1.29 0.96 0.79 0.62

8-residue 1i0hA 145 1.35 0.36 1.37 0.88 0.74

1ixh 106 1.61 2.36 1.21 0.59 0.57

1lam 420 1.60 0.83 0.90 0.79 0.66

1qopB 14 1.85 0.69 1.24 0.72 0.92

3chbD 51 1.66 0.96 1.23 1.03 1.03

Average 1.59 1.01 1.19 0.78 0.72

1cruA 358 2.54 2.00 2.39 2.27 2.07

1ctqA 26 2.49 1.86 2.54 1.72 1.66

1d4oA 88 2.33 1.60 2.44 0.84 0.82

1d8wA 46 4.83 2.94 2.17 2.11 2.09

1ds1A 282 3.04 3.10 2.33 2.16 2.10

12-residue 1dysA 291 2.48 3.04 2.08 1.83 1.67

1eguA 508 2.14 2.82 2.36 1.68 1.71

1f74A 11 2.72 1.53 2.23 1.33 1.44

1qlwA 31 3.38 2.32 1.73 2.11 2.20

1qopA 178 4.57 2.18 2.21 2.37 2.36

Average 3.05 2.34 2.25 1.84 1.81

aRMSD values (in Å) taken from Table 2 of Ref. [27].
bRMSD values (in Å) taken from Table 1 of Ref. [20].
cRMSD values (in Å) taken from Table 1 of Ref. [45].
dRMSD values (in Å) obtained from fragment assembly and initial loop closure.
eRMSD values (in Å) obtained from minimization of the Ramachandran energy with the analytical gradient

after FALC.
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TABLE III: The main chain RMSD values of the loops sampled by RAPPER and by this work for
the Fiser loop set.

Loop RAPPERa FALCm4b

Length Targetsc Rmin
d Rave

e Rmin
d Rave

e

4 35 0.43 1.65 0.33 0.92

5 35 0.53 2.27 0.44 1.63

6 36 0.69 3.06 0.47 2.34

7 38 0.78 3.79 0.58 2.74

8 32 1.11 4.16 0.84 3.69

9 37 1.29 5.00 0.95 4.21

10 37 1.67 5.66 1.45 5.07

11 33 1.99 6.71 1.47 5.76

12 34 2.21 6.96 1.74 6.31

aTaken from Table 3 of Ref. [7].
bObtained from screening with the DFIRE-β potential after the four-fold sampling with fragment assembly,

analytical loop closure, and Ramachandran minimization.
cThe number of loop targets.
dMinimum main-chain RMSD (in Å) averaged over the loop targets.
eAverage main-chain RMSD (in Å) averaged over the loop targets.

TABLE IV: The average RMSD values of the lowest energy conformations obtained by DFIRE
scoring of the RAPPER ensemble sets and those generated by FALCm4 presented in Table III.

Loop length RAPPER a FALCm4

4 0.86 0.54

5 1.00 0.92

6 1.85 1.36

7 1.51 1.17

8 2.11 1.87

9 2.58 2.08

10 3.60 3.09

11 4.25 3.43

12 4.32 3.84

aTaken from Table S2 of Ref. [47].
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