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Abstract

A way is presented of modeling complex mechanical systems, and particularly closed
kinematic chains, that are comprised of elastic components. The motion of each link is viewed
using a moving reference frame and the zero tip deformation constraint is introduced to define
the orientation of the reference frames. That analysis is combined with the differential-algebraic
formulation and the equation of motion is given in constrained form. We investigate the effect
of the shortening of the projection and show that ignoring it can lead to gross inaccuracies.

Introduction

Modeling of manipulators and closed kinematic chains that have flexible links has been
considered by many researchers. In order to simplify partial differential equations associated
with flexible links some of them used assumed modes technic to derive equations of motion [1]-
[4]. Others used discretisation of the links like finite element method [5]-[8], or finite segment
modeling combined with Kane’s equation formulation [9]. Some of the earliest work was done
by Neubauer at. al. [10] where they derived equations of motion by using both assumed modes
method and finite element method. They considered slider-crank mechanism and only transverse
vibrations of the connecting rod.

Since modeling of flexible dynamical systems is very complex most of the early papers con-
sidered only transverse vibrations [1],[4],[6], and/or only one link was flexible [2],[3],[4],[6],[10].
Introduction of powerful computers enables researchers to consider both axial and transverse vi-
brations, and allow all links to be flexible [5],[7],[8],[9].

In this paper, we consider dynamical systems that are comprised of elastic linkages. We
write the equations of motion using constrained generalized coordinates and we describe the
elastic motion of the linkages in terms of moving coordinate systems. Most of the papers [1],
[3]-[10] neglect coupling effect between axial and transverse vibrations ( i.e,. shortening of
the projection ). Therefore, we analyze the characteristics of the response as a function of the
shortening of the projection and variety of other factors.

Using constrained generalized coordinates to derive the equations of motion is more suitable
than using a set of independent generalized coordinates in a variety of circumstances. For
example, in a closed kinematic chain it is difficult to obtain a set of independent generalized
coordinates and to express the remaining coordinates in terms of the independent coordinates
[10]. Barring a few exceptions, the same situation is encountered even when a method that can
handle nonholonomic constraints by means of generalized speeds is used.
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To derive the describing equations in terms of constrained coordinates, one makes use
of Lagrange multipliers. The resulting equations are said to be in differential-algebraic form
[12–16]. These equations are differential equations with respect to the generalized coordinates
and algebraic with respect to the Lagrange multipliers, as the derivatives of the Lagrange
multipliers do not appear.

After the describing equations are derived, one can reduce these equations into unconstrained
form by eliminating the Lagrange multipliers, or deal with these equations in their differential-
algebraic form. The latter choice has become possible in the last 25 years, as more analysis has
been conducted on differential-algebraic systems, and software has been developed to integrate
such equations. In the last ten years, the control of systems described by differential-algebraic
equations has begun to see renewed interest [12],[17–19].

The motion of flexible bodies undergoing combined rigid and elastic motion can be analyzed
by viewing the motion from a moving reference frame. The use of such a frame imposes
a constraint on the motion viewed from this frame. This constraint is usually taken into
consideration by selecting the trial functions that describe the motion viewed from the moving
reference frame. Two methods, albeit not very suitable for multilink systems, are the rigid body
mode and the zero slope constraints [10], [20].

In this paper, we use the zero tip deformation constraint [10], as it is more suitable when
dealing with miltilink mechanisms. We show that use of this constraint results in simpler
mathematical models and it does not lead to mathematical inconsistencies.

We combine in this paper the differential-algebraic approach with the zero tip deformation
constraint, and we derive the describing equations of a closed kinematic chain with elastic
components. We integrate these equations and analyze them for accuracy, relevant terms in the
equations of motion, the shortening of the projection and controllability.

The Zero Tip Deformation Constraint
Consider the motion of the beam in Fig. 1. The beam is attached to some other body by a

pin joint. As the beam moves, it undergoes large-angle rigid as well as elastic motion. When
the elastic deformation is small, we can view the motion of the beam as a superposition of a
primary motion and a secondary motion. The primary motion defines a reference frame from
which the motion of the beam is observed. The secondary motion is the motion amplitude of
the beam as observed from the reference frame. Denoting the reference frame associated with
the secondary motion by xyz, and the angle that the x axis makes with an inertial X axis by �,
the position of a point on the beam axis can be represented by

r(x ; t) = ro(t) + xi+ u(x; y)i+ v(x; t)j (1)

in which ro(t) denotes the origin of the reference frame, selected here for convenience as the
pin joint. The deformation in the x and y directions is denoted by u(x; t) and v(x; t). The
secondary motion is described by the last two terms in the above equation.

There are several ways of selecting the location and orientation of the reference frame
associated with the primary motion. The most important consideration is to have the reference
frame such that the secondary motion is small and it can be modeled using linear vibration
theory. As can be observed from Fig. 1, it is possible to find several orientations of the primary
motion ( for example x, x0, or x

00 ) such that the secondary motion has small amplitudes.
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Note that use of the reference frame introduces additional variables to describe the motion
and it creates a redundancy [20]. This redundancy is usually dealt with by selecting the reference
frame such that a set of constraints are applied to the secondary motion. These effect of these
constraints is to alter the boundary conditions associated with the secondary motion. By selecting
the expansion functions to describe the secondary motion, these constraints can be satisfied. This,
in essence, is tantamount to selecting a set of independent generalized coordinates. It should be
noted that these constraints are at a mathematical level, and that they do not change the force
and moment balances at the boundaries.
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Figure 1: A Flexible Link

In this paper we only consider plane motion. Before describing the zero tip deformation
constraint, we discuss two other constraints. The first is known as the rigid body mode constraint
and the coordinate system x

0
y

0 in Fig. 1 describes the secondary motion. This constraint forces
the secondary motion to have no rigid body components. For the pinned-free beam under
consideration this constraint can be expressed as

Z

body

x
0

v
0

�
x

0

; t

�
dm = 0 (2)

where dm is the differential mass element. We note that x
0

denotes the rigid body mode. One
can then expand the secondary motion using the boundary conditions of a pinned-free beam. The
eigenfunctions of a pinned-free beam or orthogonalized polynomials constitute possible choices
for expanding the trial functions.

There are a number of disadvantages associated with this formulation. First, one has to
use the real-time measurements of the absolute motion of points on the beam and then invoke
Eq. (2) to calculate the orientation of the reference frame. If the beam is attached to another

member at its other end
�
x

0

= L

�
, then we do not have a pinned-free beam and the concept

of rigid body mode is no longer meaningful. For such a case, using the eigenfunctions of a
pinned-free beam as trial functions leads to physical incompatibilities, as these trial functions
won’t be able to satisfy the force balance at x

0

= L. Finally, eigenfunctions of a pinned-free
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beam are comprised of hyperbolic sines and cosines, which are not very desirable to use from
a computational perspective.

The second constraint is known as the zero slope constraint and it is implemented by selecting
the reference frame x

00

y
00

in Fig. 1, such that the secondary motion has zero slope at the pinned
end (x

00

= 0). One can use the eigenfunctions of a fixed-free beam or the polynomials x
00
2, x

00
3,

... as trial functions to expand the elastic motion.

The use of this constraint has the advantage that it is very simple to orient the reference
frame. However, use of this constraint leads to inaccurate models even when the elastic behavior
of the beam is relatively small. Further, all the concerns expressed above when the end x

00

= L

is not free and the convergence of the trial functions are valid for this constraint as well [10].

Let us next consider the zero tip deformation constraint, which is invoked by drawing a
straight line between the ends x = 0 and x = L. The configuration is represented by the
coordinate system xy in Fig. 1. As a result, the boundary conditions on the secondary motion
become those of a pinned-pinned beam, so that one can use simple sine functions to expand
the secondary motion.

Use of this constraint does not have any of the problems associated with the previous two
constraints. It is easy to orient the reference frame, both mathematically and in real time, the
trial functions used to expand the secondary motion have no numerical or sensitivity problems,
and the force balances at the boundaries are always satisfied, regardless of whether an end is
free or connected to another body.
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Figure 2: The Two Link Flexible Mechanism

There are two other advantages associated with using the zero tip deformation constraint:
i) the resulting equations are simpler than when the other constraints are used, which makes
simulating them easier, and ii) the resulting equations have a hierarchical form, which makes it
easier to conduct a sensitivity analysis. To demonstrate these advantages, consider the two link
flexible mechanism, shown in Fig. 2. For illustrative purposes, we neglect axial stretch, and
consider deformation in one direction only. The position vectors for points on the two beams
can be written as

r1(x1; t) = x1i1 + v1(x1; t)j1; r2(x2; t) = r1(L1; t) + x2i2 + v2(x2; t)j2 (3)
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where the subscripts 1 and 2 denote the number of the links. The above form for the position
vector is valid for either constraint used. The difference arises in the evaluation of the r1(L1; t)
term. We expand the secondary motions of the two beams as

v1(x1; t) =

n1X

k=1

�1k(x1)q1k(t); v2(x2; t) =

n2X

k=1

�2k(x1)q2k(t) (4)

where �1k and �2k are suitable trial functions, and q1k and q2k are generalized coordinates.

Noting that the angular velocity of the first frame is _�1(t), we can write r1(L1; t) and its
time derivative as

r1(L1; t) = L1i1 +

n1X

k=1

�1k(L1)q1k(t)j1

_r1(L1; t) =
n1X

k=1

�1k(L1) _q1k(t)j1 + L1 _�1(t)j1 � _�1(t)
n1X

k=1

�1k(L1)q1k(t)i1

(5)

When using the zero tip deformation constraint �1k(L1) = 0, (k = 1; 2; :::) Eqs. (5) reduce to

r1(L1; t) = L1i1; _r1(L1; t) = L1 _�1(t)j1 (6)

which are much simpler expressions than the general terms in Eqs. (5). Hence, the expression
for r2(x2; t) becomes

r2(x2; t) = L1i1 + x2i2 + v2(x2; t)j2 (7)

Extension of this to a multibody mechanism (two or three dimensional), we can write the
deformation of the pth element as

rp(xp; t) = L1i1 + L2i2 + :::+ Lp�1ip�1 + xpip +

npX

k=1

�pk(xp)qpk(t)jp (8)

Hence, in the expression for the elastic deformation of each element there is only one summation
for the secondary motion. Further, as one changes the number of terms that are used for the
secondary motion, the changes to the equations of motion can be observed more clearly than
in other methods. Note also that the same trial functions are used for all links. A comparison
of the zero tip deformation constraint and the zero slope and rigid body mode constraints is
conducted in [10]. Some of the advantages of the zero tip deformation constraint disappear
when the axial deformation is included in the formulation. In that case, positions of particles
of the links are defined as

r1(x1; t) = x1i1 + u1(x1; t)i1 + v1(x1; t)j1 (9)

r2(x2; t) = r1(L1; t) + (x2 + u2(x2; t))i2 + v2(x2; t)j2 (10)
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Kinetic Energy for Elastic Links
In this section we investigate the kinetic energy associated with interconnected elastic

linkages. The axial deformation is also included in the formulation. The velocities of points
on the links are

_r1(x1; t) =
�
_u1 � _�1v1

�
i1 +

�
_v1 + _�1x1 + _�1u1

�
j1 (11)

_r2(x2; t) = _r1(L1) +
�
_u2 � _�2v2

�
i2 +

�
_v2 + _�2x2 + _�2u2

�
j2 (12)

or
_r2(x2; t) = ( _u1L)i1 + (L1 + u1L)j1

+
�
_u2 � _�2v2

�
i2 +

�
_v2 + _�2x2 + _�2u2

�
j2

(13)

where indices 1 and 2 correspond to the first and second links. _�1(t) and _�2(t) are the angular
velocities of the coordinate frames x1y1 and x2y2, and u1L = u1(L1; t). The two coordinate
systems are related as

i1 = cos (�2 � �1)i2 � sin (�2 � �1)j2

j1 = sin (�2 � �1)i2 + cos (�2 � �1)j2
(14)

The kinetic energy of the links are

Tk =
1

2

LkZ

0

�(xk)(_rk � _rk)dxk; k = 1; 2 (15)

After introducing Eqs. (11)–(14) into expression for kinetic energy and neglecting higher
order terms we get expressions for the kinetic energy of the first and second links as

T1 =
1

2

L1Z

0

�(x1)f _�
2

1
v
2

1
+ _v

2

1
+ _�2

1
x
2

1
+ 2_v1 _�1x1 + 2 _�2

1
x1u1gdx1 (16)

T2 =
1

2

L2Z

0

�(x2)f _�1L
2

1
+ 2 _�1 _�2L2x2 cos (�2 � �1)

�2 _u1L _�2x2 sin (�2 � �1) + 2 _�1 _�2u1Lx2 cos (�2 � �1)

+2 _�1L1

�
_u2 � _�2 _v2

�
sin (�2 � �1) + 2 _�1L1

�
_v2 + _�2u2

�
cos (�2 � �1)

+ _�2
2
v
2

2
+ _v

2

2
+ _�2

2
x
2

2
+ 2_v2 _�2x2 + 2 _�2

2
x2u2gdx2

(17)

One can use simple sine functions, such as �ki(x) = sin i�xk

Lk
; i = 1; 2; ::: (0 � xk � Lk

k = 1; 2), to expend the secondary motion of each link, which can be written as

vk =

nkX
i=1

�ki(xk)qki(t); k = 1; 2 (18)
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We assume that the axial stretch is negligible so that the axial deformation, also known as
the shortening of the projection, reduces to [20]

uk(xk) = �
1

2

xkZ
0

�
@vk

@�k

�2
d�k = �

1

2

nkX
r=1

nkX
s=1

U
k
rs(xk)qkr(t)qks(t) (19)

where

U
k
rs(xk) =

xkZ
0

@�kr(�k)

@�k

�

@�ks(�k)

@�k

d�k (20)

Using Eqs. (18)—(20) the kinetic energies can be expended as

T1 =
1

2
I1o

_�2
1
+

1

2
_�2
1
q
T

1
(m1 � h1)q

1
+

1

2
_qT
1
m1 _q

1
+ a

T
1
_q
1

_�1 (21)

T2 =
1

2
I2o

_�2
2
+

1

2
m2

_�2
1
L
2

1
+

1

2
m2

_�1 _�2L1L2 cos (�2 � �1)

+
1

2
_�2
2
q
T

2
(m2 � h2)q

2
+

1

2
_qT
2
m2 _q

2
+ a

T
2
_q
2

_�2

+m2
_�1L1p

T

2
_q
2
cos (�2 � �1)�m2

_�1 _�2L1p
T

2
q
2
sin (�2 � �1)

�

1

4
m2

_�1 _�2L2q
T

1
U1Lq

1
cos (�2 � �1)�

1

2
m2

_�2
1
L1q

T

1
U1Lq

1
+

1

2
m2

_�2L2q
T

1
U1L _q

1

�m2
_�1L1q

T

2
N2 _q

2
sin (�2 � �1)�

1

2
m2

_�1 _�2L1q
T

2
N2q

2
cos (�2 � �1)

(22)

where

mkij =

LkZ
0

�ki(xk)�kj(xk)dmk; hkij =

LkZ
0

1

2

�
L
2

k � x
2

k

��@�ki(xk)

@xk

�2

dmk;

aki =

LkZ
0

xk�ki(xk)dmk; p2i =

L2Z
0

�2i(x2)dm2; N2 =
1

L2

L2Z
0

U2(x2)dx2

U1L = U1(x1 = L1); k = 1; 2

(23)

Expressions for kinetic energies can also be rewritten as

T1 = T
R
1

+ T
v
1
+ T

u
1

(24)

T2 = T
R
2

+ T
v
2
+ T

u
2
+ T

L1u2
2

+ T
L1v2
2

+ T
L2u1
2

(25)

where

T
R
2

=
1

2
I2o

_�2
2
+

1

2
m2

_�2
1
L
2

1
+

1

2
m2

_�1 _�2L1L2 cos (�2 � �1) (26)

T
R
1

=
1

2
I1o

_�2
1

(27)
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represent kinetic energy due to the primary motion. These two terms also represent kinetic
energy for rigid body model when flexibility is neglected. Existence of the secondary motion
contributes to the kinetic energy as

T v

k
=

1

2
_�2
k
qT
k
mkq

k
+

1

2
_qT
k
mk _q

k
+ aT

k
_q
k

_�k; k = 1; 2 (28)

The shortening of the projection u has the following contribution to the kinetic energy

T u

k
=

1

2
_�2
k
qT
k
hkq

k
; k = 1; 2 (29)

and influence of the shortening of the projection u1 of the first link on the kinetic energy for
the second link is

TL2u1

2
= �

1

4
m2

_�1 _�2L2q
T

1
U1Lq

1
cos (�2 � �1)�

1

2
m2

_�2
1
L1q

T

1
U1Lq

1
+

1

2
m2

_�2L2q
T

1
U1L _q

1
(30)

Since the origin of the coordinate system x2y2 is not fixed and the flexibility is included then
there are extra terms in the expression for the kinetic energy of the second link

TL1u2

2
= �m2

_�1L1q
T

2
N2 _q

2
sin (�2 � �1)�

1

2
m2

_�1 _�2L1q
T

2
N2q

2
cos (�2 � �1) (31)

TL1v2

2
= �m2

_�1 _�2L1p
T

2
q
2
sin (�2 � �1) +m2

_�1L1p
T

2
_q
2
cos (�2 � �1) (32)

When the axial stretch and shortening of the projection are neglected the kinetic energies
for the first and second links simplify to

T1 = TR

1
+ T v

1
(33)

T2 = TR

2
+ T v

2
+ TL1v2

2
(34)

The Differential-Algebraic Formulation
When writing the equations of motion of a system, one first determines the number of degrees

of freedom and then selects a set of generalized coordinates and, depending on the method used,
generalized velocities or speeds. At this stage, one can opt for a set of independent coordinates
or a set of dependent coordinates. When the constraints acting on the system are holonomic, it
is possible, at least in theory, to find a set of independent generalized coordinates. When the
constraints are nonholonomic equality constraints, one can find a set of independent generalized
speeds.

When a set of independent coordinates are used, the number of equations of motion are the
same as the number of degrees of freedom. Using a set of dependent coordinates, we introduce
the Lagrange multiplier formulation to the problem and the resulting equations are in terms of
the Lagrange multipliers. Denoting the Lagrange multipliers by �j; (j = 1; :::;m), where m is
the number of constraints, the resulting equations have the form

[M(w)]�w + h( _w;w) + [A]
T
� = F (35)
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in which [M ] is a matrix of order n�n, with n denoting the number of generalized coordinates,
[A] is the constraint matrix of order m� n, w is generalized coordinate vector, and � contains
the Lagrange multipliers. The constraints can be written in the matrix form as

[A] _w + b = 0 (36)

Once the equations of motion are derived in constrained form, one can eliminate the Lagrange
multipliers by means of algebraic operations. Many times such a procedure is tedious and may
be harder than writing the equations of motion directly in terms of independent coordinates.

There are several complex systems where it is difficult to either write the equations of motion
directly in unconstrained form, or to eliminate the Lagrange multipliers from the constrained
formulation. Large mechanisms are one example. In such cases, it may be worthwhile to
analyze and simulate the behavior of the system under consideration using alternate procedures
that do not deal with the elimination of the Lagrange multipliers.

Differentiating Eq. (36) with respect to time

[A]�w = g� (37)

and combining with Eq. (35) we obtain the describing equations of the dynamical system.
These equations are said to be in differential-algebraic form. The equations are differential with
respect to the generalized coordinates, but algebraic with respect to the Lagrange multipliers, as
the derivatives of the Lagrange multipliers do not appear in the formulation.

Over the past 20 years, interest in simulating and designing control laws for systems described
by differential-algebraic equations has seen tremendous interest [12], [15–19], [21–22]. There
now exists powerful software to simulate systems described by differential-algebraic equations
[12], [17]. We take advantage of these developments and introduce the differential-algebraic
formulation to mechanisms that have elastic arms.

Elastic Closed Kinematic Chains

We will illustrate the modeling procedure by a simple-looking example. Consider the four
bar mechanism in Fig. 3. When the links are rigid, the mechanism has one degree of freedom.
Writing the equation of motion in unconstrained form using one generalized coordinate, say �1,
proves to be complicated [16], so we explore writing the equations of motion in constrained form.

We use �1, �2, and �3 as the generalized coordinates and treat links 1 and 2 as one system and
link 3 as another. As a result, we have three equations of motion and two constraint equations,
corresponding to the displacement of point P being common to both systems. An alternate
method of writing the equations would be to treat each link separately and use five generalized
coordinates and four constraints [16].
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Figure 3: The Four Bar Mechanism

We consider motion in a horizontal plane and we are ignoring elastic effects for the time
being, so that the potential energy is zero. The Lagrangian has the form

L = T =
1

2
I1

_�2
1
+

1

2
I2

_�2
2
+

1

2
I3

_�2
3
+

1

2
m2v

2

G
(38)

where I1, and I3 are mass moments of inertia of the first and third links about their fixed pin
joints and I2 is the mass moment of inertia of the second link about its center of mass. We
denote by m2 and vG the mass and velocity of the center of mass of the second link. The
velocity of the center of mass of the second link has the form

vG = �
�
L1

_�1 sin �1 + L2
_�2 sin �2

�
I+

�
L1

_�1 cos �1 + L2
_�2 cos �2

�
J (39)

where the unit vectors associated with the inertial frame XY are denoted by I and J. The
virtual work has the form

�W =M��1 (40)

and the constaints are

L1 cos �1 + L2 cos �2 � L3 cos �3 � L4 = 0

L1 sin �1 + L2 sin �2 � L3 sin �3 = 0
(41)

We obtain the equations of motion as
�
I1 +m2L

2

1

�
��1 +m2L1L2 cos (�2 � �1)��2 �m2L1L2 sin (�2 � �1) _�2+

�1L1 sin �1 � �2L1 cos �1 =M�
I2 +m2L

2

2

�
��2 +m2L1L2 cos (�2 � �1)��1 +m2L1L2 sin (�2 � �1) _�1+

�1L2 sin �2 � �2L2 cos �2 = 0

I3
��3 + �1L3 sin �3 + �2L3 cos �3 = 0

(42)
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The complexity of these equations should be compared with the equation of motion in terms
of the single unconstrained coordinate, given in [16]. Considering that we are about to introduce
flexibility effects, the complexity of the equations that would be resulting using unconstrained
coordinates will be much worse. Hence, we dispense with the unconstrained formulation and
use the zero tip deformation constraint to describe the secondary motion.
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Figure 4: Flexible Four Bar Mechanism

Let us only consider deformation in the plane. Figure 4 shows the selection of the reference
frames. We attach a moving frame x1y1 to the first link, a frame x2y2 to the second link, and a
frame x3y3 to the third link. The angular velocities of the reference frames are _�1, _�2, and _�3,
respectively. The kinetic energy expressions for links 1 and 2 are given in Eqs. (24) and (25).
The kinetic energy for the third link has the same form as the kinetic energy of the first link:

T1 = T
R

1
+ T

v

1
+ T

u

1

=
1

2
I1o

_�2
1
+

1

2
_�2
1
q
T

1
(m1 � h1)q

1
+

1

2
_qT
1
m1 _q

1
+ a

T

1
_q
1

_�1
(43)

T2 = T
R

2
+ T

v

2
+ T

u

2
+ T

L1u2
2

+ T
L1v2
2

+ T
L2u1
2

=
1

2
I2o

_�2
2
+

1

2
m2

_�2
1
L
2

1
+

1

2
m2

_�1 _�2L1L2 cos (�2 � �1)

+
1

2
_�2
2
q
T

2
(m2 � h2)q

2
+

1

2
_qT
2
m2 _q

2
+ a

T

2
_q
2

_�2

+m2
_�1L1p

T

2
_q
2
cos (�2 � �1)�m2

_�1 _�2L1p
T

2
q
2
sin (�2 � �1)

�

1

4
m2

_�1 _�2L2q
T

1
U1Lq

1
cos (�2 � �1)�

1

2
m2

_�2
1
L1q

T

1
U1Lq

1
+

1

2
m2

_�2L2q
T

1
U1L _q

1

�m2
_�1L1q

T

2
N2 _q

2
sin (�2 � �1)�

1

2
m2

_�1 _�2L1q
T

2
N2q

2
cos (�2 � �1)

(44)
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T3 = TR
3

+ T v
3
+ Tu

3

=
1

2
I3o _�

2

3
+

1

2
_�2
3
qT
3
(m3 � h3)q

3
+

1

2
_qT
3
m3 _q

3
+ aT

3
_q
3

_�3
(45)

where I1o, I2o, and I3o are mass moments of inertia of links 1 ,2 and 3 with respect
to the origins on corresponding moving reference frames. The even numbered terms of
aki(k = 1; 2; 3 ; i = 2; 4; :::) disappear as a result of the symmetry properties of the sine func-
tion. Also, because of the properties of the sine function, mk (k = 1; 2; 3) are diagonal matrices,
where the diagonal terms depend on the mass properties. As a result of the elasticity of the arm,
we have potential energy associated with the system, which can be expressed as

Vk(t) =

nX

i=1

nX

j=1

Kkij ; k = 1; 2; 3 (46)

where

Kkij =

LkZ
0

EI(xk)
@2�ki(xk)

@x2k

@2�kj(xk)

@x2k
dxk; i; j = 1; 2; :::; n (47)

When the arm is uniform, Kkij simplifies to 
kimkii�ij in which 
ki are the natural
frequencies of the k-th arm. The equations of motion can now be obtained by taking the
appropriate derivatives of the kinetic and potential energies.

The Lagrangian has the form

L = T1 + T2 + T3 � V1 � V2 � V3

= TR
1

+ T v
1
+ T u

1
+ TR

2
+ T v

2
+ T u

2
+ TL1u2

2
+ TL1v2

2
+ TL2u1

2

+TR
3

+ T v
3
+ T u

3
� V1 � V2 � V3

(48)

The virtual work has the form

�W =M��1 +M�0(0)�q (49)

The constraint equations are

(L1 + u1(L1; t)) cos �1 + (L2 + u2(L2; t)) cos �2 = (L3 + u3(L3; t)) cos �3 + b

(L1 + u1(L1; t)) sin �1 + (L2 + u2(L2; t)) sin �2 = (L3 + u3(L3; t)) sin �3
(50)

The equations of motion can be shown to be

[M(w)]�w + h( _w;w) + [A]
T
� = F

[A]�w = g�
(51)

where

[M ] =

"�
[M ]

R
123

+ [M ]
Ru
123

+ [M ]
Rv
123

� �
[M ]

qu
123

+ [M ]
qv
123

�
�
[M ]

qu
123

+ [M ]
qv
123

�T
[M ]q

#
(52)

12



h =

2
6666664

hR
1
+ hu1

1
+ hv1

1
+ hu2

1
+ hv2

1

hR
2
+ hu1

2
+ hu2

2
+ hv2

2

hu3
3

+ hv3
3

hu1q1 + hv1q1
hu2q2 + hv2q2
hu3q3 + hv3q3

3
7777775

(53)

[A] =
h�

[A]
R
123

+ [A]
u
123

�
[A]q1 [A]q2 [A]q3

i
(54)

g� = gR + gu1 + gu2 � gu3 (55)

and F is a vector of length n = 1 + n1 + n2 + n3 and nk ( k = 1; 2; 3 ) is the number of
trial functions used for each link. Expressions for the submatrices in the above equations are
given in the appendix.

When the shortening of the projection is not considered, then equation of motion is the same
as Eq. (51), but the matrices inside the equation are given as

[M ] =

"�
[M ]

R
123

+ [M ]
Rv
123

�
[M ]

qv
123�

[M ]
qv
123

�T
[M ]q

#
; h =

2
6666664

hR
1
+ hv1

1
+ hv2

1

hR
2
+ hv2

2

hv3
3

hv1q1
hv2q2
hv3q3

3
7777775

(56)

[A] = [A]
R
123

; g� = gR (57)

and F is a vector of length n = 1 + n1 + n2 + n3.

When only rigid body model is considered, then the equation of motion is also given by
Eq. (51) with the following matrices

[M ] = [M ]
R
123

; h =

2
4hR1hR

2

0

3
5 (58)

[A] = [A]
R
123

; g� = gR (59)

and F is a vector of length n = 1.

Analysis of the Equations of Motion

The equations of motion for both the rigid body and flexible models have the same form.
The difference between the two can be seen by comparing the expressions for matrices that are
used in the equation of motion. They are given by Eqs. (51),(58),(59) for the rigid body model
and by Eqs. (51),(53)-(55) or Eqs. (51),(56),(57) for the flexible models. Deriving the equation
of motion for the rigid body model in terms of independent generalized coordinates is difficult
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and introducing flexibility to the model adds extra complexity. Hence, the differential-algebraic
formulation becomes a viable approach.

Another question is whether it is necessary to include shortening of the projection into the
model. The answer to that question can be found by comparing the equations of motion. It is
obvious that equation of motion that include the shortening are more complex than ones without
shortening. To determine how much the shortening of the projection is important we simulate
the motion by using both models. We consider that the mechanism moves on a horizontal plane
(i.e., there is no gravitational potential energy), and there is no external forcing (i.e., F = 0).
The total system energy is conserved (i.e., E = T + V = constant). For all simulations it
is assumed that links are made of steel (density is � = 7830kg=m3 and elastic modulus is
E = 20:7GPa). The cross section of the links are 10mm � 8mm rectangles. The lengths of
the links are L1 = 1m, L2 = 1:2m, L3 = 1m , and L4 = 1:2m. We choose as independent
coordinates �1, q

1
, q

2
, and q

3
, while �2 and �3 are dependent coordinate. Initial values for

the independent coordinates are �1 = �=3rad, _�1 = 1:5rad=sec, q
1
= 10�3 � [5 0:1 ]

T
m,

q
2
= 10�3� [5 0:1 ]

T
m, q

3
= 10�3� [50 0:1 ]

T
m, _q

1
= [0 0 ]

T
m=s, _q

2
= [0 0 ]

T
m=s, and

_q
3
= [0 0 ]

T
m=s. The natural frequencies for the first and third likes are 
11 = 
31 = 117:2s�1

and 
12 = 
32 = 468:8s�1. The second link has the natural frequencies 
21 = 81:38s�1 and

22 = 325:5s�1.

We simulate differential-algebraic equations (DAE) as follows: first we decide which coor-
dinates are the independent ones and then we eliminate Lagrange multiplier � and acceleration
terms of dependent coordinates ( in our case ��2 and ��3) from Eq. (51). That new differential
equation contains only acceleration terms of independent coordinates, but it is a function of dis-
placement and velocity of both independent and dependent coordinates. By using given initial
values of the independent coordinates we solve constraint equations for �2, _�2, �3, and _�3. These
values are used to numerically solve new differential equation for independent coordinates. This
whole cycle is repeated for each interval of time. After each cycle we have to check whether
independent coordinates are chosen properly so that constraint equations can be solved for the
dependent coordinates. If that is not possible a new set of independent coordinates has to chosen
[13]. Note that DAE can also be solved by using available softwares, such as DASSL [12].

Figure 5 shows the total system energy for models with and without shortening. The total
energy is little bit higher when the shortening is included.

In order to analyze how much the shortening contributes to the total energy we first simulate
the motion by using the model with shortening. The total energy of the system in that case is

E = TR

1
+ T v

1
+ Tu

1
+ TR

2
+ T v

2
+ T u

2
+ TL1u2

2
+ TL1v2

2
+ TL2u1

2

+TR

3
+ T v

3
+ T u

3
+ V1 + V2 + V3

(60)

Using the system response from that simulation we calculate the total energy without terms that
are caused by the shortening or

Ec = TR

1
+ T v

1
+ TR

2
+ T v

2
+ TL1v2

2

+TR

3
+ T v

3
+ V1 + V2 + V3

(61)

This is the same as the total energy of the system for the model without shortening. The values of
Ec are presented in Fig. 6. These results correspond to measuring the real system response and
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calculating the total energy by using Eq. (61). It is clear that the shortening of the projection
is not negligible.
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As long as we use the same model (either with or without shortening) to simulate the motion
and calculate the total energy, from Fig. 5 we see that the total energy of the system is constant.
The problem arises when we use the real system to measure the response but we design a control
law or perform some other analyses based on the model without shortening.

Note that shortening of the projection does not play an important role when there is only one
link. By contrary, when modeling multilink flexible mechanisms shortening of the projection
can not be neglected. Figures 7 and 8 show the difference between the response of the first two
modes, for the models with and without shortening.
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3 Parts of The Kinetic Energy

Not all the terms in Eq. (60) are of the same magnitude. Figures 9–13 show the time history
for different parts of the kinetic energy. Comparing Fig. 11 with other figures we see that Tu

1
,

T u
2

, and T u
3

parts of kinetic energy are the smallest. On the contrary, TL1u2
2

and TL2u1
2

are much
larger. These two parts of the kinetic energy exist because the second link is attached to the first
link and the origin of the coordinate system x2y2 is moving. From Figs. 9–13 we see that the
shortening of the projection should not be neglected when there is a multilink mechanism.
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From the previous discussion it may appear that the shortening u3 can be neglected
completely. That is not correct because u1, u2, and u3 influence all of the generalized coordinates
through the constraint equations. We demonstrate this by performing the simulation by using
the model with the shortening ( ie., both dependent and independent coordinates are obtained by
using the shortening ). The total energy is calculated by using simulation results for independent
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coordinates but the dependent coordinates �2 and �3 are obtained from Eq. (59) ( ie., shortening
of the projection is not included in the constraint equations ). That case is presented in Figure
14. As expected the total energy is not constant.
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Figure 14: The Total energy

Conclusions

In this paper we present a new way of modeling complex mechanical systems that are
comprised of elastic components, particularly closed chains. We view the motion of each link
using a moving reference frame and introduce the zero tip deformation constraint. We combine
this analysis with the differential-algebraic formulation and write the equation of motion in
constrained form. We analyze the form and solution of the resulting equations.

We also analyze whether it is necessary to include the shortening of the projection when
the links are flexible. We conclude that shortening can not be neglected when there are two
or more interconnected links.

Appendix

Here, we provide expressions for submatrices and other parameters that are used in the
equations of motion given by Eqs. (51)-(59).

[M ]R
123

=

2
4

I1o +m2L
2

1
0:5m2L1L2 costt 0

0:5m2L1L2 costt I2o 0

0 0 I3o

3
5 (62)

[M ]Rv
123

=

2
4
qT
1
[m1]q

1
�m2L2p

T

2
q
2
sintt 0 0

0 qT
2
[m2]q

2
0

0 0 qT
3
[m3]q

3

3
5 (63)
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[M ]Ru
123

=

2
4�q

T
1
[h1]q

1
�m2L1q

T
1
U1Lq

1
# 0

# �qT
2
[h2]q

2
0

0 0 �qT
3
[h3]q

3

3
5 (64)

where # = �m2

�
0:25L2q

T
1
U1Lq

1
+ 0:5L1q

T
2
N2q

2

�
costt, costt = cos (�2 � �1), sintt =

sin (�2 � �1), and [M ]qk = [mk ], k = 1; 2; 3.

[M ]qu
123

=

2
4 0 �m2L1q

T
2
N2 sintt 0

0:5m2L2q
T
1
U1L 0 0

0 0 0

3
5 (65)

[M ]qv
123

=

2
4a

T
1

m2L1p
T
2
costt 0

0 aT
2

0

0 0 aT
3

3
5; [M ]q =

2
4[m1] 0 0

0 [m2] 0
0 0 [m3]

3
5 (66)

hR
1
= �0:5m2L1L2

_�2
2
sintt; h

v1
1

= 2qT
1
[m1]_q

1

_�1 (67)

h
u1
1

= 2qT
1
[h1] _q

1

_�1 � 2m2L1
_�1q

1
U1L _q

T

1
+ 0:25m2L2

_�2
2
q
1
U1Lq

1
sintt (68)

h
u2
1

= �m2L1 _q
T

2
N2 _q

2
sintt�2m2L1

_�2q
T

2
N2 _q

2
costt�0:5m2L1

_�2
2
qT
2
N2q

2
sintt (69)

h
v2
1

= �2m2L1
_�2p

T

2
_q
2
sintt�m2L1

_�2
2
pT
2
q
2
costt (70)

hR
2
= 0:5m2L1L2

_�2
1
sintt (71)

h
u1
2

= 0:5m2L2 _q
T

1
U1L _q

1
sintt�m2L2

_�1q
T

1
U1L _q

1
costt�0:25m2L2

_�2
1
qT
1
U1Lq

1
sintt (72)

h
u2
2

= �2 _�2q
T

2
[h2]_q

2
� 0:5m2L1

_�2
1
qT
2
N2q

2
sintt (73)

hv2
2

= 2 _�2q
T

2
[m2] _q

2
+m2L1

_�2
1
pT
2
q
2
costt (74)

hR
3
= 0; h

u3
3

= �2 _�3q
T

3
[h3] _q

3
; h

v3
3

= 2 _�3q
T

3
[m3]_q

3
; (75)

hv1q1 = � _�2
1
[m1]q

1
(76)

hu1q1 = _�2
1
[h1]q

1
+ 0:5m2L2

_�2
2
U1Lq

1
costt+m2L1

_�2
1
U1Lq

1
(77)

hu2q2 = _�2
2
[h2]q

2
+m2L1

_�2
1
N2q

2
costt (78)

hv2q2 = � _�2
2
[m2]q

2
+m2L1

_�2
1
p
2
sintt (79)

hu3q3 = _�2
3
[h3]q

3
; hv3q3 = � _�2

3
[m3]q

3
(80)

[A]
R
123

=

�
�L1 sin �1 �L2 sin �2 L3 sin �3
L1 cos �1 L2 cos �2 �L3 cos �3

�
(81)

[A]u
123

=

�
0:5qT

1
U1Lq

1
sin �1 0:5qT

2
U2Lq

2
sin �2 �0:5qT

3
U3Lq

3
sin �3

�0:5qT
1
U1Lq

1
cos �1 �0:5qT

2
U2Lq

2
cos �2 0:5qT

3
U3Lq

3
cos �3

�
(82)

[A]qk =

�
�qT

k
UkL cos �k

�qT
k
UkL sin �k

�
; k = 1; 2; 3 (83)
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g
R
=

�
�L1

_�2
1
cos �1 � L2

_�2
2
cos �2 + L3

_�2
3
cos �3

�L1
_�2
1
sin �1 � L2

_�2
2
sin �2 + L3

_�2
3
sin �3

�
(84)

g
uk =

�
0:5 _�2

k
q
T

k
UkLq

1
cos �k + 2 _�kq

T

k
UkL _q

k
sin �k � _q

T

k
UkL _q

k
cos �k

0:5 _�2
k
q
T

k
UkLq

1
sin �k � 2 _�kq

T

k
UkL _q

k
cos �k � _q

T

k
UkL _q

k
sin �k

�

k = 1; 2; 3

(85)
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