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It has been a mystery to me why more thought has not been devoted to the
geometry of structures. One could argue that there are areas of mathematics that
deal with the “structure of things”, such as the theory of elasticity, distance ge-
ometry, the smooth theory of rigid surfaces, for example. But in my mind these
subjects are either appendages to other more general interests or they have been
sidetracked into irrelevant and uninteresting directions.

On the other hand, there have been some admirable accomplishments coming
from attempts to understand rigid structures. One of the first results of A. L.
Cauchy in 1813 in [2] was a surprisingly insightful theorem about the rigidity of
convex polyhedral surfaces. (Never mind that a mistake went unnoticed and unre-
paired for more than 50 years.) After Cauchy the subject that one might call the
geometry of discrete rigid structures progressed slowly in the mathematical world.
But in the engineering world there was a very healthy and vigorous interest in rigid
structures. Bridges, buildings, mechanical gadgets and countless other “things” had
to be built. Indeed some interesting mathematical ideas have a background from
this sort of engineering. For example, for many years in the nineteenth century
the primary method of computing forces on a structure was through what is called
“graphical statics”. (See Crapo and Whiteley [5] for a discussion of this classical
subject.) Today some of these ideas are finding their way into the mathematical
literature. For example, it is not too much of a stretch to say that the “regular or
coherent triangulations” of Billera and Sturmfels [1] are extensions of some of the
ideas that are involved with graphical statics. However, the lack of an overriding
mathematical point of view in the engineering literature has created an underlying
subliminal confusion. (See Griinbaum and Shephard’s Lectures on lost mathemat-
ics [6] for more evidence of this confusion.) Only in the last 25 years or so have
proper definitions been put forward to clarify vague ideas and some of the “results”
in the engineering literature been sorted into theorems and conjectures.

There is a basic and important question. Is a given structure rigid or is it not?
One must decide what the structure is and what it means to be rigid. A natural
candidate for such a structure consists of a finite collection of points, a configuration
p=(p1,...,0n), pi € R? Euclidean space, together with a graph G' whose vertices
correspond to the points of the configuration and whose edges correspond to pairs
of points that are constrained to stay the same distance apart. The graph G and
the configuration p, together denoted as G(p), are called a framework and the edges
of G are called bars. The framework G(p) is rigid if the only continuous motion
of the points of the configuration p maintaining the bar constraints is one coming
from a family of congruences (motions of all of Euclidean space that preserve all
distances).

The subject naturally develops in two related directions, the geometric and com-
binatorial. Roughly speaking, the geometric considerations are those that have to
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do with the configuration p, and the combinatorial considerations are those that
have to do with the graph G. Cauchy’s Theorem is an example of the geometric
theory because of the convexity assumption. (For a discussion of rigidity from the
point of view of convexity, see Connelly [3].) One says the graph G is (generically)
d-rigid if for almost all (an open dense set of) configurations p, the framework G(p)
is rigid in R%. Combinatorial rigidity theory is concerned with the generic rigidity
of such graphs.

From either point of view a natural first step is to “linearize” the problem.
Regard the graph G as determining a function, the rigidity map, f : R% — R€,
where R is the space of all configurations of n points in R, R¢ is the target
Euclidean space for the squared edge lengths, and e is the number of edges in
G. For a configuration p, the appropriate coordinate of f(p) is the square of the
distance between the vertices of the corresponding edge of G. The matrix of the
differential df with respect to the natural coordinates R and R® is called the
rigidity matriz R(p) for G(p). The framework G(p) is called infinitesimally rigid
if the rigidity matrix R(p) is of maximal rank. A basic theorem says that if the
framework G(p) is infinitesimally rigid, then it is rigid. From this it is possible to
see that the graph G is generically rigid if for some configuration p, the framework
G(p) is infinitesimally rigid.

One of the first non-trivial results of the more recent combinatorial theory of
rigid graphs is a result of Laman in [8]. Suppose that a graph G has exactly 2n — 3
edges, where n is the number of vertices of G. Then G is generically rigid in R? if
and only if ¢/ < 2n’ — 3 for every subgraph of G with n’ vertices and ¢’ edges. This
is a completely combinatorial characterization of (generically) rigid graphs in the
plane, an example of a success for the combinatorial theory. It is an outstanding
problem to find an analogous result for (generically) rigid graphs in three-space.
One advantage of such a combinatorial characterization is that because of Laman’s
Theorem, there is an algorithm to test the (generic) rigidity of any graph in the
plane whose running time is proportional to n2, where n is the number of vertices
of the graph G. See Lovasz, Yemini [9] as well as Hendrickson [7] and Crapo [4] for
a discussion (and some improvements) of such algorithms.

Combinatorial rigidity is a much-needed graduate-level introduction to the the-
ory of generically rigid graphs. After a pleasant introduction to the general theory
and a brief history in Chapter 1, Chapter 2 discusses infinitesimal rigidity. Chap-
ter 3 continues with a systematic, but somewhat tedious, discussion of matroid
theory, especially as it applies to the rigidity theory. Chapter 4 covers the theory
for planar rigidity, and Chapter 5 discusses the situation in higher dimensions as
well as some of the most relevant unsolved problems. There is also a very useful
annotated list of references.

One of the interesting approaches in this book can be exemplified as follows. Re-
gard the configuration p in R? as any set of generic points. All the coordinates of p
are algebraically independent over the rational numbers. Consider the graph G as
the complete graph with all n(n—1)/2 possible edges present. Consider the rigidity
matrix R(p) of this graph. Each subset of the rows of R(p) will either be indepen-
dent or not. For any graph on that set of vertices, such information can be used to
determine infinitesimal and thus generic rigidity for the corresponding subgraph.
This is also the classic example of a matroid. Roughly speaking, a matroid is a
finite set (for example, the rows of a matrix) together with something generalizing
a concept from linear algebra (for example, linear independence and dependence of
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any subset of the rows of a matrix) that satisfies a natural set of properties for that
concept. Combinatorial rigidity then includes additional properties for an abstract
matroid that define what the authors call an abstract rigidity matroid. So in this
context, Laman’s Theorem provides a very good combinatorial characterization of
this generic rigidity matroid. There are also other examples of abstract matriods,
for instance the spline matriods in Whiteley [11].

The only thing that seems to be missing from the book is a discussion of vertex
splitting and related subjects. This is an operation first used by W. Whiteley in [10]
that takes a generically rigid graph with a minimal number of bars (this is called
isostatic) and replaces it with another that has one of the vertices replaced by two
new ones joined to the old vertices and each other appropriately. The resulting
graph is also isostatic. I regard vertex splitting and Laman’s Theorem as the two
most important ideas in combinatorial rigidity in the last 50 years.

There are a very large number of exercises ranging from the finish-this-boring-
proof to the very stimulating and interesting to the unsolved problems of the sub-
ject. Generally the book is mistake-free, although there are some annoying but
minor mistakes. For a graduate student or for a motivated upper-level undergradu-
ate student, this book is a good, accessible first place to get started learning about
the generic rigidity of frameworks.
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