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Abstract

In this paper two main topics are treated. In the first part we give a synthetic presentation
of the geometry of rigid body motion in a projective geometrical framework. An important
issue is the geometric approach to the identification of twists and wrenches in a Lie group
approach and their relation to screws. In the second part we give a formulation of the dynamics
of multibody systems in terms of implicit port controlled Hamiltonian system defined with
respect to Dirac structures.

1 Introduction

The geometry of rigid body motion was one of the main topics in the developments of geometry
in the nineteenth century (see the remarquable historical perpective by R. Ziegler [47]). One of
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the comprehensive theories was proposed by Sir R.S. Ball in the theory of screw exposed in his
famous book [3]. In the following century this subject remained atopic of active research as well
for the kinematic and static as well as for the dynamical models of multibody systems especially
in the robotics community. It is characterized by a variety of subtle geometric approaches. One
of them is the theory of Lie groups [17] which turned out to be very useful for the study of motion
and robotics [32]. The theory of screws has the advantage that it is based on the geometry of lines
and is therefore geometrically attractive, giving intuitive insight in the mechanisms [22] [37] [19].
On the other hand, Lie groups are analytically very handy. A formal relation between the two is
shown in Sec.2.

Concerning the formulation of the dynamical models, additonal structure has to be added. For
nstance in the Lagrangian formulation, the symplectic canonical form on the space of generalized
coordinates and velocities or in the standard hamiltonian approach the corresponding symplectic
Poisson bracket. In section Sec.3 we shall briefly indicate how another geometrical structure,
called Dirac structure [9] may be used to formulate the dynamics of multibody systems in terms
of an implicit port controlled Hamiltonian system [29].

2 Rigid body motions

Rigid bodies motions have been studied in the past using different techniques like skrew theory [3]
and Lie Groups [32]. Screw theory uses the projective extension of the Eucledian three dimensional
space. Since in this work we relate the two approaches, we first start with a formal explanation
relating the usual conception of an Eucledian space to its projective extension.

In what follows, it is easy to grasp the idea for the lower two dimensional case considering a
cinema with an infinitely extended screen (the two dimensional Eucledian space). A point on the
screen is actually a beam passing throw the projector (the origin of the vector space of dimension
three which embeds the screen). The plane parallel to the screen and passing through the projector
is called the improper hyperplane.

2.1 Projective geometry and Eucledian Spaces

An extention to the conception we have of the three dimensional Eucledian spaces can be found
in projective geometry1. To talk about the 3D Eucledian world in a projective setting, we need
three ingredients:

• A real vector space V4 called the supporting vector space of dimension 4 from which we
exclude the origin.

• An equivalence relation on V4 − {0}: v1 ∼ v2 ⇔ ∃α ∈ R 
= 0 s.t. v1 = αv2.

• A polarity P , which is a 2 covariant, symmetric tensor defined on V4 which in the sequel
will be taken semipositive defined and of rank 1.

The basic transformations between points of projective spaces are defined as injective linear
transformations between the supporting vector spaces. These transformations must be injective
to prevent that the subspace corresponding to the kernel of the transformation is mapped to the
0 element of the codomain which is NOT a valid element of the projective space2. These kinds of
transformations are called homographies or collineations and in our case are mappings from V4 to

1Caley in 1859, by introducing the concept of an “absolute”, showed that projective geometry is the most general.
2It will be shown later that to have a proper definition of the projective space, the 0 element must be excluded.
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V4. Maps from V4 to the dual V4∗ are instead called correlations. A symmetric correlation as P
is called polarity.

2.1.1 Improper hyperplane

Using the polarity P , it is possible to consider the vectors pi belonging to the quadric defined by
the polarity P which is called the absolute:

Pijp
ipj = 0 pi ∈ V4.

The absolute, is a three dimensional subspace of V4 which is called the improper hyperplane and
it is indicated with I3 ⊂ V4. This hyperplane represents the “points at infinity”.

The improper hyperplane splits V4 in two disjointed semi-spaces which we will call respectively
positive semi-space and indicate it with I+ and negative semi-space and indicate it with I−.

The three dimensional projective space is defined as the quotient space of V4 excluding the
origin with respect to the defined equivalent relation:

P3 :=
V4 − {0}
∼

In a purely projective setting, without considering the polarity, all points are of the same type.
Considering the polarity, we can make a distinction between finite points and infinite points.
Infinite points are those whose representative in V4 belong to I3 and finite points are the others.
We indicate with PF the finite points and with P∞ the points at infinity. Clearly we have that
P = PF ∪ P∞. Furthermore, for each finite point p ∈ PF (Pijp

ipj 
= 0), there are representatives
v ∈ V4 belonging either to I+ or to I−. We can define the sign function σ for elements v ∈ V4:

σ(v) :=



+1 v ∈ I+

0 v ∈ I3

−1 v ∈ I−
(1)

2.1.2 Adjoint polarity

Associated with the polarity P , one defines its adjoint3Q which is a 2 contravariant, symmetric,
semipositive tensor of rank 3. Once a proper base {ex, ey, ez, e0} for V4 is chosen, the representa-
tions of P and Q become:

P =



0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1


 Q =



1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0


 (2)

In the same coordinates, a vector of V4 has the form (x, y, z, α)T and if α = 0 the vector belongs
to I3.

3If instead of 0 on the diagonal elements of P and Q we substitute ε, we see that QP = PQ = εI where I is the
identity matrix.
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2.1.3 Points and Free vectors

It is possible to associate to each pair of finite vectors in PF a unique element of I:

f : PF × PF → I ; (p, q) �→ p

||p||σ(p) −
q

||q||σ(q) (3)

where p, q are any representatives and || · || represents the P -norm. It is possible to see that the
previous operation is indeed independent of the representatives of the points and therefore well
defined. Note that the difference of two points can be calculated using the vector structure of V4.
Furthermore, the improper hyperplane without the equivalence relation and with the origin of V4,
gets the meaning of the vector space of free-vectors. In the usual coordinates, this means that if

p =



αpxp

αpyp
αpzp
αp


 and q =



αqxq

αqyq
αqzq
αq




we have ||p||σ(p) = αp and ||q||σ(q) = αq and therefore

f(p, q) =



xp − xq

yp − yq
zp − zq

0




Note that indeed the last component is equal to zero which confirms the fact that the element
belongs to I. It is usual to use the notation:

p− q := f(p, q)

for obvious reasons, but the normalisation of Eq.3 before the subtraction is essential to make the
operation intrinsically defined.

2.1.4 Lines

A line l ⊂ P3 in a projective context is nothing else than a one dimensional subspace which
corresponds to a two dimensional subspace L ⊂ V4 (without the origin) of the supporting vector
space V4. In a projective context it is also possible to talk about lines at infinity when L ⊂ I3. As
a consequence, a line can be described both as the subspace spanned by two points of V4 or as the
intersection of two hyperplanes of V4. As in every 2n dimensional vector space an n dimensional
subspace is self-dual, so is a line in P3 a self dual entity.

It is possible to show that using the previous coordinates, given two distinct points x, y be-
longing to a line where

x =
(
x̄
1

)
and

(
ȳ
1

)
where x̄, ȳ ∈ R

3

the corresponding line can be identified homogeneously to a vector of the form

α

(
ȳ − x̄
x̄ ∧ ȳ

)
where α ∈ R− {0}. (4)
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Eq.4 can be clearly written as: (
ȳ − x̄

x̄ ∧ (ȳ − x̄)

)
=

(
ū
r̄ ∧ ū

)
. (5)

It is easy to see that choosing instead of x̄ and ȳ other two distinct points on the same line in the
usual geometrical sence, the vector l defined as in Eq.4 is the same if a proportional multiplication
constant is used. This implies that the space of lines has somehow a projective nature by itself,
but it should be noticed that the linear combination of two lines as expressed in Eq.4 is in general
NOT a line.

2.1.5 Euclidean product on the improper hyperplane

It is now possible to define a proper non-singular, internal product for I3 which gives rise to the
scalar product which characterises a proper Euclidean Space. In the previous canonical coordi-
nates, an element vi ∈ I3 is characterised by the last component equal to zero. We can associate
to vi ∈ I3 the subspace of hyperplanes Hvi

for which vi is what is called the polar with respect to
Q:

h ∈ Hvi
⇔ vi = Qh

where Q is the adjoint of P . We can now define the scalar product of two vectors v1, v2 in I3 as:

〈v1, v2〉 :=
√
hT

1Qh2 h1 ∈ Hv1 , h2 ∈ Hv2 (6)

It is easy to see that the previous definition is well posed since it is independent on the elements
h1 and h2 due to the structure of Q.

2.1.6 The Euclidean space

It is now possible to define the following Euclidean three dimensional space as the pair (E3, 〈〉)
such that E3 := P3, and 〈, 〉 is the scalar product just defined on E3

∗ := I3 which is treated as a
vector space. As with P, we indicate with EF finite points and with E∞ infinite points and again:

E = EF ∪ E∞.

Proper collineations of the Euclidean space are defined as the ones which keep the polarity P , and
therefore the improper hyperplane I3 invariant. It can be seen that in the previous coordinates a
proper Euclidean collineation has the form:

c : R
4 → R

4; q �→
(
σR p
0 1

)
q (7)

where R ∈ SO(3), the set of positively oriented orthonormal matrices, σ can be either equal to
+1 for an orientation preserving transformation or −1 for a transformation changing orientation
and p ∈ R

3.
Looking at the expression of Eq.4 for a line, it is possible to find how these coordinates trans-

form. Using Eq.7 and Eq.4, it is possible to see that the mapping of a line corresponds to the
mapping of points as reported in Eq.7 becomes:(

ȳ2 − x̄2

x̄2 ∧ ȳ2

)
=

(
σR 0
σp̃R R

) (
ȳ1 − x̄1

x̄1 ∧ ȳ1

)
(8)
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where the operator tilde is such that p̃ is a skew-symmetric matrix and it is such that p̃a = p ∧ a
for each a ∈ R

3.
Using the matrix rotation group SO(3) and the intrinsically defined operation of Lie brackets

[21], it is possible to orient E by defining a 3−form Ω on I3. We suppose that the coordinates
(ex, ey, ez, e0) chosen are such that Ω(ex, ey, ez) = +1 and ez = [ex, ey] where [, ] represents the
Lie algebra commutator of so(3). In these coordinates, the operation of vector product “∧” in R

3

results the usual one.

2.2 Displacements of rigid bodies

2.2.1 Euclidean system

As shown in [24] and [39], to describe the relative motion of 3D rigid parts in a geometrically
intrinsic way, it is necessary to consider a set of Euclidean spaces of dimension three. This set is
called a Euclidean system in [38] and indicated with

Sm := {E1, E2, . . . , Em} (9)

The concept of an observer is very important and is coupled to the concept of space: an
observer is identified with a Euclidian space in which he is rigidly connected together with all
those objects which are always stationary in relation to him. A set of objects which are never
changing position in relation to one another can be considered as a single entity from a kinematic
point of view.

For these reasons and for more formal ones that should become clear in the sequel, we consider
as many Euclidian spaces as there are bodies moving relative to one another. All these Euclidean
spaces are such that they have the improper hyperplane of their projective extension in common.
An object will be a constant subset of a Euclidian space together with a mass density function
which associates a value to each of the body’s points.

It is also possible to define, using the Killing form [38], an Equivalence Inertial Relation on the
set of all possible Euclidean spaces. Elements of the same class can only translate with constant
velocities with respect to one another.
One Euclidean class which is particularly important and is called Inertial class is the class where
physical laws are invariant. We will usually indicate a particular representative of this class with
E0.

In the projective setting, these Euclidean spaces can be seen as a set of four dimensional vector
spaces with a common polarity P and a common improper hyperplane.

2.2.2 A rigid body

In the presented setting, a rigid body is is a subset of a Euclidean space Ei ∈ Sm together with a
mass density function which associates a value to each of the body’s points:

ρi : Ei → R
+

The mass density function is relevant for dynamic considerations. For kinematic considerations,
it is sufficient to define a proper body Bi as a constant subset of a Euclidian space Ei instead.
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2.2.3 Coordinate functions

A coordinate Ψi for the space Ei is a 4-tuple of the form

Ψi = (oi, x̂i, ŷi, ẑi) oi ∈ Ei, x̂i, ŷi, ẑi ∈ E∗i

where x̂i, ŷi, ẑi should be linear independent. If furthermore x̂i, ŷi, ẑi are orthonormal, we call the
coordinates orthonormal. Eventually we call the coordinates positively oriented iff Ω(x̂i, ŷi, ẑi) =
+1 where Ω is the form orientating the Euclidean space. If not otherwise specified, we will always
consider positively oriented, orthonormal coordiantes systems. We can now define a base for V4

i

dependent on Ψi using the four linear independent vectors:

x̂i, ŷi, ẑi,
oi

||oi||σ(oi)
∈ V4

of V4.
The map which associate a representative of a point of E to its numerical representation using

this base, is indicated with ψi:

ψi(p) =
(
px, py, pz, αp

)
⇒ p = pxx̂i + py ŷi + pz ẑi + α

oi
||oi||σ(oi)

Clearly we have that:

ψ−1
i (·, ·, ·, 0) = I3 ∀i = 1, . . . ,m (10)

and therefore this coordinates are characterised by the fact that the last component equal to zero
represents a point at infinity.

2.2.4 Displacements of rigid bodies

We can associate the relative positions of bodies belonging to two different Euclidean spaces Ei
and Ej to a positive isometry between Ei and Ej [24] [38]:

hj
i : Ei → Ej ; pi �→ hj

i (pi)

such that hj
i is an isometry:

||(hj
i (pi)− h

j
i (qi))|| = ||(pi − qi)|| ∀pi, qi ∈ Ei

and it is orientation preserving

(hj
i (pi)− h

j
i (oi)) ∧ (hj

i (qi)− h
j
i (oi)) = h

j
i ((pi − oi) ∧ (qi − oi) + oi)− hj

i (oi)

We indicate the set of positive isometries from Ei to Ej with SEj
i (3). In the case i = j, SEi

i(3)
will be indicated with SEi(3) and is a Lie group [21].

Once we choose a reference relative position rji ∈ SE
j
i (3), using the commutation diagram

shown in Fig.1, it is possible to associate with each element hj
i ∈ SE

j
i (3) an isometry in the Lie

group SEi(3):

hi,j
i = rji

−1 ◦ hj
i (11)
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Ei

Ei

Ej

Ej

rji

rji

hj
ihi hj

Figure 1: The commutation diagram of the relation among elements of the Lie groups and the
reference.

In an analoguous way, one may associate with each element hj
i ∈ SE

j
i (3) an isometry of SEj(3):

hj,j
i = hj

i ◦ r
j
i

−1
(12)

Note that by NO means is this mapping intrinsic [39]: it depends on the reference choice rji !
An element hj

i ∈ SE
j
i is an intrinsic, coordinate free representative of the relative position of

Ei with respect to Ej .
If we assign to each space Ei a coordinate ψi with the properties reported in Eq.10 and we

assume that in a certain instant the relative position is hj
i ∈ SE

j
i , a point p ∈ Ei corresponds

uniquely to the point hj
i (p) ∈ Ej . The usual change of coordinate from Ψi to Ψj for a certain

relative configuration is therefore:

c : R
4 → R

4 : pi �→ (ψj o h
j
i o ψ

−1
i )(pi)

If the coordinate systems Ψi and Ψj are positively oriented and orthonormal and since hj
i ∈ SE

j
i (3)

is a positively oriented isometry, then the mapping c is linear and is equal to a matrix of the form:

Hj
i =

(
Rj

i pji
0 1

)
(13)

where Rj
i ∈ SO(3), p

j
i ∈ R

3 and therefore Hj
i ∈ SE(3). Note that pji characterises how the origin

of Ψi is mapped to in frame Ψj .
It is important to notice that we can easily relate the restrictions that in the coordinates Ψi

the polarity P gets the form of Eq.2 together with the Euclidean product defined in Eq.6, to the
usual concept of orthonormal bases for the Euclidean spaces.

This can be seen considering the three vectors x̂i := ψ−1
i ((1, 0, 0, 0)), ŷi := ψ−1

i ((0, 1, 0, 0))
and ẑi := ψ−1

i ((0, 0, 1, 0)) belonging to E3
∗ . It is easy to see that for the defined coordinates we

have that x̂i, ŷi and ẑi are an orthonormal set since they have norm one and are orthogonal with
respect to each other. Furthermore, the vector ψi((0, 0, 0, 1)) belongs to the dual space of I3 and
has P -norm equal to 1.

It is possible to see that we can define a bijective relation between elements of E3
∗ and elements

of V4 which have, using a coordinate ψi, the last component4 equal to α > 0. If we consider the
4Note that both element with the last component equal to α and −α have P -norm equal to α
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last component as a scaling factor respect to the P -norm, it is reasonable to give elements with
the last component equal to one a special role.

For what said, using the coordinates ψi and considering elements with α = 1 as special rep-
resentative of the equivalent classes which are elements of E , we have all the properties of an
orthonormal base for the elements x̂i, ŷi and ẑi.

2.3 Twists

2.3.1 Velocities and twists

So far we have considered relative positions without introducing motion. The latter is clearly a
change of relative position. To be able to talk about change, we need to consider a time set I
which will be an open interval of R. We can then consider curves in SEj

i (n) parameterized by
t ∈ I.

Definition 1 (Relative Motion). We call a differentiable function of the following form5:

hj
i : I → SEj

i (n)

a relative motion of space i with respect to j

Since relative motions are differentiable, we can consider the velocity vector of the curve at hj
i

which we indicate as

ḣj
i ∈ Thj

i
SEj

i (n).

The vector ḣj
i (t) is a bounded vector dependent on the current configuration hj

i (t). Using the
identification of relative positions with isometries in SEj(3) reported in Eq.12, one can associate
to a local velocity ḣj

i (0) an element of sej(n), the Lie algebra of the Lie group SEj(3) of Ej called
twist in j−frame. Analogously, using the identification reported in Eq.11 one can associate an
element of sei(n), the Lie algebra corresponding to the Lie group SEi(n) of Ei called twist in
i−frame. These elements may be defined in a geometrical way [21, 24, 38], but in this text we will
define them in their numerical representation below. We denote with tj,ki ∈ sej(3) the twist which
describes the motion of Ei with respect to Ek as an element of sej(3). It is shown in [39, 38] that
special care should be considered in the definitions of intrinsic twists.

2.3.2 Numerical representation of twists

We have shown in the previous section that after we have chosen coordinates, we can relate a
relative configuration hj

i ∈ SE
j
i (n) to a matrix belonging to SE(3). Namely, we can associate the

relative position hj
i ∈ SE

j
i (n) to the matrix Hj

i which corresponds to the change of coordinates
from Ψi to Ψj .

Consider now a point p ∈ Ei. If we take the numerical representation P i of this point p using
the coordinates Ψi, we clearly have that Ṗ i = 0 since p is a fixed point of Ei. We can then write the
numerical representation of this point in the coordinate Ψj fixed with Ej . Using the coordinates
change matrix, we obtain:

P j = Hj
i P

i

5Note the abuse of notation here: hj
i has been used both as an element of SEj

i (n) and as a function from I to

SEj
i (n).
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T̃ Ḣj
i Notation

T̃ := Hi
jḢ

j
i Ḣj

i = Hj
i T̃ Ṗ j = Hj

i (T̃P
i) T̃ i,j

i

T̃ := Ḣj
iH

i
j Ḣj

i = T̃Hj
i Ṗ j = T̃ (Hj

i P
i) T̃ j,j

i

Table 1: The possible forms of twists

Differentiating over time, we have:

Ṗ j = Ḣj
i P

i

where we used the fact that Ṗ i = 0 and where we consider the following representative for points:

P k :=
(
pk

1

)
k = i, j

Before proceeding, we need a result which is well known and useful for what follows.

Theorem 1. Given a matrix H ∈ SE(3) continuously depending on a scalar t, we have that:

ḢH−1,H−1Ḣ ∈ se(3).

where

se(3) :=
{(
ω̃ v
0 0

)
∈ R

4×4 s.t. ω, v ∈ R
3

}

and ω̃ is the skew-symmetric matrix such that for any vector x, ω̃x = ω ∧ x.

The set of matrices se(3) which result from the product of a matrix belonging to SE(3) times the
derivative of its inverse (or vice versa) is called the Lie algebra of SE(3). The elements belonging
to se(3) are the numerical representative of the twists in i−frame or in j−frame. We will use the
following notation:

T :=
(
ω
v

)
⇒ T̃ =

(
ω̃ v
0 0

)
∈ se(3)

The vector T is the vector of Plücker coordinates of the twist T̃ and we will abusively also
call a twist. We have therefore a vector representation of a twist and a matrix representation:
respectively T ∈ R

6 and T̃ ∈ R
4×4. For the twist of Ei with respect to Ej we consider Ṗ j = Ḣj

i P
i

10



and we have the two possibilities reported in Tab.1. Furthermore

Ṗ j = Hj
i (T̃P

i)⇒
(
ṗj

0

)
=

(
Rj

i pji
0 1

)(
ω̃ v
0 0

)(
pi

1

)
⇒ ṗj = Rj

i (ω ∧ pi) +R
j
i v

and

Ṗ j = T̃ (Hj
i P

i)⇒
(
ṗj

0

)
=

(
ω̃ v
0 0

)(
Rj

i pji
0 1

)(
pi

1

)
⇒ ṗj = ω ∧ (Rj

ip
i + pji ) + v

The rotational part is the usual angular rotation. The linear velocity part of the twist T i,i
j ,

v = pij ∧ ω
i,i
j + ṗij is the velocity of a point q rigidly connected to Ψj and passing through the

origin of Ψi.

2.3.3 Changes of coordinates for twists: the adjoint representation

The twists in i−frame and in j−frame are related by a linear map called adjoint mapping or adjoint
representation of the Lie group SE(3) on se(3) [21, 38] and have a numerical representation relating
the vector representations of the twists as follows:

T j,j
i = AdHj

i
T i,j

i

where

AdHj
i
:=

(
Rj

i 0
p̃jiR

j
i Rj

i

)
.

The matrix AdHj
i
is dependent on Hj

i and this implies that if the relative position of Ei with

respect to Ej changes, Hj
i will change and as a consequence, the matrix AdHj

i
will be time varing.

We will need the time derivative of AdHj
i
for expressing the dynamics of a rigid body.

˙(
AdHj

i

)
= AdHj

i
adT i,j

i

where ad is called the adjoint representation of the Lie algebra [21]

adT k,j
i

:=
(
ω̃k,j

i 0
ṽk,j

i ω̃k,j
i

)

Note that the matrix adT is a function of a twist T and not of a relative position H as AdH .

2.4 Wrenches and their identification with twists

In order to define properly the interaction of a rigid body with the rest of the mechanism, force
variables, in the sense of the action of a set of forces on a body, have to be considered. The action
of a set of forces on a body is called wrench. The wrench is a vector of se∗(3), the dual space of
the space of twists, which allows to express the power resulting from the action of the wrench W
on the body undergoing a trajectory H(t) with twist T , is the scalar product:

Power = 〈W,T 〉
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where 〈, 〉 denotes the duality product. Using Plücker coordinates for the wrenches (in the dual
basis to the Plücker basis of twists) one obtain a vector representation of the wrenches:

W =
(
m f

)
where m represents the torque and f the linear force, the power may be expressed:

Power =WT

2.4.1 Changes of coordinates for Wrenches

As the wrenches belong to the dual space of twists, changes of coordinates induces the adjoint
change of wrenches. Hence in the numerical representation, the transformation of wrenches is
given by the transposition of the adjoint mapping:

(W i)T = AdT
Hj

i

(W j)T

It is important to note that if the mapping AdHj
i
was mapping twists from Ψi to Ψj , the transposed

maps wrenches in the opposite direction: from Ψj to Ψi ! This is because Wrenches are duals of
Twists and they are pulled-back.

2.4.2 Bi-invariant forms on se(3) and reciprocity of twists

It has been shown in [23] that the space of bi-invariant, and therefore intrinsic, 2-forms defined
on sei(3) is a linear combination of the hyperbolic metric Hij and the Killing form Kij . In the
coordinates we used so far, their numerical representations are:

H =
1
2

(
0 I3
I3 0

)
and K = −4

(
I3 0
0 0

)

And a general bi-invariant metric is given by:

B = hH + kK h, k ∈ R

Among all the possible metrics, there are two which have special properties which allow to directly
relate Lie groups to the theory of screws.

If we consider the kernel of B, this is different than the trivial zero element of sei(3) iff h = 0.
A proportional element of the Killing form has therefore a first special property. Furthermore,
among all the Bs there is just one metric which is generated by an involutive map, which means
that an expression of its inverse is equal to the form itself and this is namely obtained when k = 0
and h = 2. This involutivity property results fundamental to relate Lie groups to screws and
corresponds to the selft-duality of lines.

We indicate H̄ = 2H and K̄ = − 1
4K. These two special 2-forms are fundamental for what

follows.

2.4.3 Identification of twists and wrenches

Using the involutive map H̄ and the duality product on se(3), one may identify the twists with
the wrenches. In the sequel we shall use this identification in order to identify both twists and
wrenches with screws.

12



se(3) L a

Figure 2: The relation of the sets in se(3).

Therefore one may define the following map, denoted by H̄# from twists T ∈ se(3) to wrenches
W = H̄#(T ), as follows:

〈W,T ′〉 = H̄(T, T ′) ∀T ′ ∈ se(3) (14)

It is remarkable that, using this identification, one may identify the adjoint mapping with its
contragradient map, in other words the coordinate change on twists and wrenches.

2.5 From Lie Groups to Screws

The relation between twists (and wrenches) and lines in P3 is stated by the classical Chasles (and
Poinsot) theorem. For expressing these theorems, some subspaces and subsets of sei(3) need to
be defined using the bi-invariant forms [22].

2.5.1 Decomposition of sei(3)

Definition 2 (Self reciprocal sub-set). We call self reciprocal sub-set the following sub-set of
sei(3):

R := {ti ∈ sei(3) s.t Hijt
itj = 0}.

Definition 3 (Axial sub-space). We call axial sub-space the following sub-space of sei(3):

a := {ti ∈ sei(3) s.t. Kijt
itj = 0}.

It is the biggest subspace whose numerical representation is invariant for changes of the origin of
the coordinates system.

Definition 4 (Lines sub-set). We call lines sub-space the following sub-set of sei(3):

L := R− a

Note that R and L are NOT subspaces, but a is. Furthermore, a ⊂ R.

Theorem 2 (Geometrical interpretation of L). Any element
(
ω r ∧ ω

)T ∈ L is charac-
terised by the fact that it leaves a line of E invariant in the direction αω and passing through
r.

From the previous theorem, we can conclude that a twist l ∈ L is therefore corresponding to a
rotation around this line.

13



Theorem 3 (Geometrical interpretation of a). Any element
(
0 v

)T ∈ a leaves free-vectors
invariant.

From the previous theorem, we can conclude that a twist a ∈ a corresponds to a translation
parallel to v.

Based on the special metrics H̄ and K̄, we can define an intrinsic surjective but not injective
operation which is called polar map:

p : sei(3)→ a ; ti �→ H̄jlK̄ijt
i

Note that we have inverted H̄ in order to get a proper tensor map. It is now possible to express
Chasles theorem as follows:

Theorem 4 (Chasles). For any t ∈ sei(3), there exist a l ∈ L and two constants αl, αa ∈ R

such that:

t = αll + αap(l) (15)

In particular, when t ∈ sei(3)− a, l is unique.

Using the coordinates we have introduced previously, the form of an element of L will be:

l =
(
ω
v

)
∈ L where ω 
= 0

Since ω 
= 0 due to the fact that L = R − a, we can consider in these coordinates the orthogonal
complement ω⊥ of ω. The fact that l ∈ R results in the algebraic condition

ωT v = 0

in these coordinates. This implies that v ∈ ω⊥ and therefore there exist a unique r ∈ R
3 such

that v = r ∧ ω. It is therefore possible to express ANY element of L in the following form:(
ω
r ∧ ω

)
(16)

where ω 
= 0. Furthermore, as a consequence of Th.4, we can always write a twist as:

t = ||ω||
(
û
r ∧ û

)
+ ||v||

(
0
û

)
where û is a unit vector.

The following theorem is also very important because it allows to express a pure translation
as the sum of two rotations.

Theorem 5 (Axial decomposition). For any a ∈ a, there exist l1, l2 ∈ L such that a = l1− l2.
As a direct consequence of Th.5, we can express any element a ∈ a as:(

0
(r1 − r2) ∧ ω

)
=

(
ω

r1 ∧ ω

)
−

(
ω

r2 ∧ ω

)
.

One of the conclusions we can draw from what said so far, is that:

sei(3) = span{L}

and therefore we can get any twist as a linear combinations of elements of L.
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2.5.2 Decomposition of se∗i (3)

The decomposition which has been shown for sei(3), can be directly mapped to se∗i (3) defining
R∗ = H̄#(R), a∗ = H̄#(a) and L∗ = H̄#(L) where H̄# corresponds to the hyperbolic metric and it
is defined in Eq.14. The Poinsot theorem is then expressed:

Theorem 6 (Poinsot). For any w ∈ se∗i (3), there exist a l∗ ∈ L∗ and two constants αl, αa ∈ R

such that:

w = αll
∗ + αap∗(l∗) (17)

In particular, when w ∈ se∗i (3)− a∗, l∗ is unique.

A pure moment may be obtained as the sum of two forces.

Theorem 7 (Dual axial decomposition). For any a∗ ∈ a∗, there exist l∗1, l
∗
2 ∈ R∗ such that

a∗ = l∗1 − l∗2.

One of the conclusions we can draw from what said so far, is that:

se∗i (3) = span{L∗}

2.5.3 The vector space of screw-vectors

We have seen that any element of se(3) belonging to the lines sub-set L has a line associated to
it, namely the line which stays invariant during this rigid rotation. To do this bijectively, we need
to associate to a line a direction and a magnitude which would characterise the angular velocity
of the corresponding twist belonging to L. In this way, we leave the homegeneous character of
lines, and obtain the vectors ∈ L (or L∗). These vectors are called bound line vectors (or rotors).
Conversely, lines (not at infinity) are members of the projectivization6 of L.

Considering the whole set of projective lines, including lines at infinity, and leaving their
homogeneous character, the set R of self-reciprocal twists is obtained. The vectors of R are called
line vectors [22]. Those corresponding to lines at infinity, member of a, are then called free line
vectors [22] (or also free vectors). Conversely, projective lines are members of the projectivization
of R.

Neither L nor R are vector spaces, but L spans a 6-dimensional vector space, that corresponds
to se(3). The vectors of this space are usually called screws [32], screw vectors [22] or also motors.

Geometrical screws, defined by a line and a pitch, are members of the projectivization of se(3)
[36].

2.5.4 Operations on screw-vectors

Operations on twists, or on wrenches, or between wrenches and twists can now be mapped into
operations on screws.

Given two screws s1 and s2 associated respectively to two elements t1, t2 ∈ se(3), their reciprocal
product is defined as:

s1© s2 := tT1 H̄t2
6With projectivization is intended the process of considering elements a, b ∈ L equivalent iff there exist a scalar

α �= 0 such that a = αb.
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The reciprocal product corresponds to the duality product of twists and wrenches. Let s1 and s2
associated respectively to t1 ∈ se(3) and w2 ∈ se(3)∗,

s1© s2 := 〈t1, w2〉

When s1©s2 = 0, the two screws are said to be reciprocal. Reciprocity of screws is used to express
non-working condition. Line-vectors are self-reciprocal, this corresponds to the self-duality of lines.

Let consider the scalar tT1 Kt2. The corresponding screw operation is called Perpendicular
product and it is indicated with:

s1♦s2 := tT1 Kt2

The vector space se(3) is a Lie algebra and therefore it has an internal product called a
commutator and corresponding to the Lie brackets of the associated Lie group SE(3). With the
previous association between screws and twists, we can define the screw-vector product as:

s1 ∧ s2 := [t1, t2]

Using the usual coordinates we have:

s1 ∧ s2 :=
[(
ω1

v1

)
,

(
ω2

v2

)]
=

(
ω1 ∧ ω2

ω1 ∧ v2 + ω2 ∧ v1

)
As already mensioned, we can associate to a screw s a screw corresponding to a line at infinity

which is called its polar and will be indicated with s′:

s′ = H̄−1Ks

As screws may be decomposed as sum of bound and free line-vectors, operations on screws
may be reduced to operations on line-vectors. Geometric distances and relations between lines
may then be used very efficently to perform calculation [22] [6]. In particular the reciprocity of
line-vectors is equivalent to the incidence of their lines (axes).

3 Kinestatic and dynamic model

In this section we shall briefly present the dynamical model of spatial mechanisms as the intercon-
nection of elementary subsystems consisting of rigid bodies, spatial springs and kinematic pairs,
through a power continuous interconnection.

Indeed formulations of dynamical models of spatial mechanical systems using network rep-
resentations (linear graphs or bond graphs [33] [15]) have been proposed as an extension of the
network representation of electrical circuit models or their analogue in mechanics, thermics or
hydraulics [16] [35], [20], [2], [42]. However these representations use as power variables, (i.e. the
variables of the interconnection network analoguous to the voltages and currents in Kirchhoff’s
laws) either scalars (in which case one has to choose a priori some coordinate systems) or real
vectors (which means that one decomposes the translations and the rotations). Using these vari-
ables may obscure and complicate considerably the modeling and the analysis of the mechanical
systems as real vectors or scalar do not reflect the geometric properties of rigid body velocities
(and displacements). Therefore other network representations of spatial mechanical systems were
proposed using as power variables the intrinsic representation of velocites and forces of rigid bod-
ies as twists and wrenches. T.H.Davies [11] used the oriented graph describing the topological

16



structure of a mechanisms and showed that a generalisation of Kirchhoff’s laws applies to the
twists and wrenches of a mechanism. This work was extended to kinestatic models of multi-body
systems by C.Bidard [7], who defined a bond graph model using the geometrical definition of twists
and wrenches as screw-vectors. Finally an extension of these bond graph models to the complete
dynamical model of a mechanical network (including spatial springs and rigid bodies), but using
the Lie-algebraic definition of twists and wrenches was proposed in [5, 26, 24, 38].

With such network models one may associate an analytical expression of the dynamics, es-
sentially in terms of port controlled Hamiltonian systems [25]. Indeed it may be shown that,
in general, one may map the interconnection structure of network models with the geometrical
structure of Hamiltonian systems (Poisson brackets for explicit Hamiltonian systems [30] or Dirac
structures for implicit Hamiltonian systems [45]) and the total energy with the Hamiltonian func-
tion. For bond graph models of spatial mechanical systems using the Lie-algebraic definition of
twists and wrenches, two formulations of the dynamics associated with the network structure were
proposed: as constrained Hamiltonian system in [24] and as an implicit Hamiltonian systems in
[29].

In the sequel, we shall briefly present the dynamical model of a spatial mechanical system as
the interconnection of the elementary subsystems: rigid body, spatial spring and kinematic pair,
using as power variables the twists and wrenches expressed as screw-vectors.

3.1 Energy storing elements and port controlled Hamiltonian systems

3.1.1 Port controlled Hamiltonian systems

Arizing from the bond graph formalism, more precisely the generalized or thermodynamical bond
graph formalism [8], so-called port controlled Hamiltonian systems were defined [30]. For the
sake of simplicity, hereafter we shall present the definition on R

n which corresponds actually to
local definition of such systems, associated with some local choice of coordinates. On R

n, a port
controlled Hamiltonian system is defined by a skew-symmetric structure matrix, denoted by J(x),
a real function, called Hamiltonian function, denoted by H(x), an input matrix, denoted by G(x)
and the following equations:

ẋ = J(x)
∂H(x)
∂x

+G(x)u

y = G(x)T
∂H(x)
∂x

(18)

where the state x ∈ R
n, the input u ∈ R

p, the output y ∈ R
n where R

n is identified with its dual
vector space R

n∗. Due to the skew-symmetry of the structure matrix : JT (x) = −J(x), the system
is indeed conservative and the change of its internal energy is only due to the power supplied by
the interconnecting port characterised by V × V ∗:

Ḣ =
∂H

∂x

T

ẋ =
∂H

∂x

T

J(x)
∂H

∂x︸ ︷︷ ︸
0⇐JT (x)=−J(x)

+
∂H

∂x

T

G(x)︸ ︷︷ ︸
yT

u = yTu

Hence, if furthermore the Hamiltonian function is bounded from below, then the system is passive
and lossless. If furthermore the structure matrix J(x) satisfies the relations

n∑
l=1

[
J il ∂J

jk

∂xl
+ Jkl ∂J

ij

∂xl
+ Jjl ∂J

ki

∂xl

]
≡ 0 (19)
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for i, j, k = 1, .., n, which is called the Jacobi identities, then it corresponds to the local definition
of a Poisson tensor [21].

It was shown that the structure of port controlled Hamiltonian systems may be related to the
structure of network or bond graph models of physical systems without energy storing elements in
excess: the structure matrix J(x) represents the power continuous interconnection structure of the
network and the Hamiltonian function corresponds to the total energy of the system [30] [31] [31].
In the case in which J(x) satisfies the Jacobi identity, the drift dynamics of the port controlled
Hamiltonian system may be related to standard, i.e. symplectic, Hamiltonian systems. Indeed, if
one some neighbourhood the rank of the structure matrix is constant and m = rankJ(x), then
there exist so-called canonical coordinates (q, p, r) such that the structure matrix gets the following
form:

J =


 0 Im 0
−Im 0 0
0 0 0p


 (20)

On this canonical expression of the structure matrix, it appears clearly that it may be split
into a first bloc-diagonal term being the standard symplectic matrix and a second one which
determines the kernel. The coordinates r, called redundant coordinates, corresponds to the kernel
of the structure matrix and seen as coordinate functions, they generate the so-called Casimir
functions [21]. It is clear that whatever the Hamiltonian function is, the redundant coordinates
are dynamical invariants of the drift dynamics of the port controlled Hamiltonian system in Eq.
18. These dynamical invariants, the Casimir functions, play an essential role in the reduction of
Hamiltonian systems with symmetries [21], but they play also an essential role for the passive
control [10] [27] as shall be presented heareafter.

Dissipation can be added by defining the structure not only with the skew-symmetric structure
matrix J(x) but also with a positive semi-definite structure matrix denoted by R(x) [10]. With
this extention, one obtains the port controlled Hamiltonian systems with dissipation:

ẋ = (J(x)−R(x))∂H(x)
∂x

+G(x)u

y = G(x)T
∂H(x)
∂x

And the energy balance gives

Ḣ = −∂H
∂x

T

R(x)
∂H

∂x
+ yTu

which shows that part of the internal energy is dissipated and modeled by R(x).

3.1.2 The rigid body element

The first elementary subsystem of a spatial mechanical system is naturally the rigid body. In
network (bond graph) models, a rigid body may be represented by a 1-port element [2] with
constitutive relations being its dynamical model. This model may be expressed in terms of a port
controlled Hamiltonian system which we shall present hereafter. Its bond graph representation
was proposed in [24] but note that it differs from this model by using now the representation of
twists and wrenches as screws.

The dynamics of a rigid body is defined on the state space composed of the position of the body
i with respect to the inertial space H0

i ∈ SE(3) and of its momentum in body frame P i ∈ se∗(3)
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[21]. The rigid body is endowed with a kinetic energy EK(P i) which is a quadratic function of
the momentum in body frame P i:

EK(Pi) =
1
2
Pi(Ii)−1(Pi)T

where Ii is a constant tensor called the inertia tensor.
It may also be endowed with a potential energy which is a function EP (H0

i ) of the displacement
H0

i . The potential energy may be, for instance, due to the gravity or may be zero7. This element
has two (power conjugated) port variables being the twist in inertial frame T 0,0

i of the body and
the conjugated wrench in inertial frame W 0

i .
The constitutive relations of this rigid body elements may then be written in the following

form of a port controlled Hamiltonian system: (see [29, equation (2.1)]):

d

dt

(
H̄0

i

Pi

)
=

(
0 TLH0

i

−TLT
H0

i
P i∧

)(
dEP (H̄0

i )
T i,0

i

)
+

(
0

AdT
H0

i

)
W 0

i

T 0,0
i =

(
0 AdH0

i

) (
dEP (H̄0

i )
T i,0

i

)
(21)

where P i∧ :=
(
P̃ω P̃v

P̃v 0

)
is a 6×6 matrix composed of 3×3 skew-symmetric matrices representing

the vector product of the angular and linear momenta, H̄0
i is a 6 dimensional vector representation

of H0
i , and TLH0

i
is such that TLH0

i
T i,0

i is equal to the parameterized form of Ḣ0
i = H0

i T̃
i,0
i . Note

that the twist T i,0
i is actually seen in these equations as the gradient of the kinetic energy EK(Pi)

with respect to the momentum Pi.
It may also be noted that the first equation in this system represents simply the definition of

the twist of the body i in inertial space and the second one is an extension of the Newton Euler
equations to a rigid body which is also endowed with some potential energy [21].

3.1.3 The spring element

The second type of energy storage in a spatial mechanisms consists in spatial springs that means
springs with a displacement being a relative position Hj

i ∈ SE(3) between the Euclidean frames i
and j. In general it may be defined by some potential function EP (H

j
i ). In bond graph models it

may be represented by a 1-port element with port variables being the twist T i,j
i and elastic force

W i
i,j of the spring in [24]. Hence the constitutive relations of the spring element may be expressed

as the following port controlled Hamiltonian system:

d
dtH̄

j
i = TLHj

i
T i,j

i

W i
i,j = TLT

Hj
i

dEP (H̄
j
i )

(22)

where the index notation is the one used in [41]. Note that the actual definition and parameteri-
zation of the potential functions for spatial springs is far from being obvious [13] [14].

7Even when the potential energy is zero, the state H0
i is necessary to be able to calculate changes of coordinates.
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3.2 The kinestatic model, Dirac structures and Hamiltonian dynamics

3.2.1 Dirac structures on vector spaces

Consider a m-dimensional real vector space V and denote by V∗ its dual. A Dirac structure [9] on
the vector space V is an m-dimensional subspace L of V × V∗ such that:

∀(f, e) ∈ L, 〈e, f〉 = 0 (23)

where 〈, 〉 denotes the duality product. In order to give some constructive definition of different
Dirac structures in the sequel, we shall use a definition of Dirac structures in terms of two linear
maps and called kernel representation of a Dirac structure [31].

Every Dirac structure L ⊂ V ×V∗ is uniquely defined in a basis B = {v1, .., vm} by the pair of
real matrices (F,E) called structure matrices and satisfying the condition:

E FT + F ET = 0 (24)

by:

L = {(f, e) ∈ V × V∗ s.t. F f̄ + Eē = 0} (25)

where f̄ is the coordinate vector of f in the basis B of V and ē is the coordinate vector of e in the
dual basis to B of V∗.

A Dirac structure defined on a vector space V encompasses the two structures of a Poisson
vector-space and a pre-symplectic vector-space [9].

Such Dirac structures arise in electrical circuits (or their mechanical analogue) where Kirch-
hoff’s laws actually endows the set of currents and voltages of the circuit or the rate variables and
the co-energy variables of an LC-circuit (possibly with elements in excess) with a Dirac structure
[28] [1]. In the sequel we shall see how Dirac structures may be associated with the kinestatic
model of a mechanism.

3.2.2 The port connection graph

Initially a mechanism is described by the topology of the set of rigid bodies, springs and kinematic
pairs that compose it . This topology is described by an oriented graph, called primary graph.
Its vertices are associated with the bodies (more precisely with the Euclidean space associated
with it) and its edges are associated with the generalized springs, kinematic pairs and dampers
with arbitrary orientation. However in order to represent explicitly the port variables of the rigid
bodies on the topology, one has to augment the primary graph in order to associate an edge also
to every body. This augmented graph is called port connection graph [18], which is obtained by
augmenting the primary graph by a reference vertex and a Lagrangian tree [34] connecting the
reference vertex with the set of vertices of the primary graph. Examples can be found in [38]. If
the inertia of some body is neglected (i.e., is set to zero), this is taken into account by erasing the
corresponding edge in the Lagrangian tree.

In this way all the elements of the mechanical network are associated with an edge and the port
variables of the elements may be considered as through and across variables of the port connection
graph like voltages and currents in an electrical network [34]. Then it may be shown that these
variables obey a generalization of Kirchhoff’s laws applied to the port interconnection graph [11]:

• the sum of the twists along any cycle (or loop) in the port connection graph vanishes,

• the sum of the wrenches along any co-cycle (or cutset) in the port connection graph vanishes.
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The Dirac structure associated with the port connection graph G may be defined as follows.
Denote by T the maximal tree in G corresponding to the Lagrangian tree and by T̄ the comple-
mentary co-tree in G. Denote by B ∈ {−1, 0, 1}q×n the incidence matrix of the primary graph,
where q is the number of rigid bodies corresponding to the order of the Eucledian system and n is
the number of edges of the primary graph. Denote by C the fundamental loop matrix defined as:

C =
(
BT In×n

)
and by Q the fundamental cutset matrix associated with T [34]:

Q =
(
Iq×q −B

)
It is easy to see that

C QT = 0 (26)

Then Kirchhoff’s loop rules is equivalent to the following constraint relations on the across and
through variables of the graph, that is, the twists TT := (TT

1 , .., T
T
n ) ∈ se(3)n and the wrenches

W := (W1, ..,Wn) ∈ se∗(3)n:

CT = 0 (27)

QWT = 0 (28)

It is now possible to define the (n+ q)× (n+ q) structure matrices of Eq.24 for the corresponding
Dirac structure as:

F =
(

C
0q×(q+n)

)
and E =

(
0n×(q+n)

Q

)
Kirchhoff’s laws are then equivalent to define the set of admissible twists and wrenches as:

DG,T = {(f, e) ∈ se(3)n × se(3)∗n s.t. Ff + Ee = 0} (29)

¿From Eq.26 follows that kerC and kerQ are dual spaces and it can be seen that dimDG,T = 6n.
(This is exactly Tellegen’s theorem). Hence the admissible set of twists and wrenches associated
with the constraint relation of the port connection graph form a constant Dirac structure on
se(3)n.

3.2.3 Dirac structures on differentiable manifolds

The definition of Dirac structures on vector spaces may be extended to differentiable manifolds
as follows. LetM be a differentiable manifold, a Dirac structure [9] onM is given by a smooth
vector sub-bundle L ⊂ TM× T ∗M such that the linear space L(x) ⊂ TxM× T ∗

xM is a Dirac
structure on the tangent vector space TxM for every x ∈M.

More intrinsic definitions in terms of duality and some characteristic distributions and co-
distributions may be found in [9] [10]. In the sequel we shall use only a local a kernel representation
of Dirac structures.

And the Dirac structure may also be locally characterized by a pair of structure matrices
(depending now smoothly on the point x inM). Indeed choosing some coordinates (x1, .., xm) in
some neighborhood of a point x ∈M , a Dirac structure is defined by a pair of matrices F (x), E(x)
depending smoothly on x such that:

L(x) = {(f, e) ∈ TxM × T ∗
xM s.t. F (x)f + E(x)e = 0} (30)
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On this local representation it may be seen that Dirac structures defined on differentiable manifolds
generalize as well as (generalized) Poisson manifolds as pre-symplectic manifolds in the same way
as Dirac structures do generalize pre-symplectic and Poisson vector spaces [9].

Remark 1. On Dirac structure there exist also some additional closeness condition which gen-
eralize the Jacobi identities of Poisson brackets taking into account also the input port. They
play also an essential role in the geometrical structure and representation of Dirac structures; the
interested reader is referred to [9] [12] [10].

3.2.4 The kinematic pair elements

The elementary constraints between two rigid bodies are defined by so-called kinematic pairs.
A kinematic pair is the kinematic idealization of a set of contacts that occur between two rigid
bodies at some configuration of the bodies [22]. The wrench W transmitted by a kinematic pair
is constrained to a linear subspace of the space of wrenches se∗(3) called the space of constraint
wrenches [22] and denoted by WC . A relative twist between the two bodies is allowed by the
kinematic pair when it produces no work with any transmissible wrench. The relative twist is thus
constrained to belong to a linear subspace of the space of twists se(3), called the space of freedom
twists [22] and denoted by T A. It is the space orthogonal to the space of transmitted wrenches
WC , in the sense of the duality product, because an ideal kinematic pair produces no work:

w© t = 0 ∀t ∈ T A,∀w ∈ WC (31)

It is important to realise that the Diract structure here used is actually defined on a submanifold
of the state manifold (SE0

i (3) × se∗(3))m corresponding to the m rigid bodies from which the
mechanism is composed of (see Eq.21). This sub-manifold K, is actually:

K := SEj(1)
i(1) (3)× . . .× SE

j(k)
i(k) (3)

where k is the number of kinematic pairs and i(l), j(l) ∈ 1, . . . , n are the two rigid bodies which
the l-th kinematic pair connects [38]. It is shown in [38], that after references are chosen, it is
possible to find a diffeomorphism

π : SEk(3)→ K

where SEk(3) is a Lie group with Lie algebra sek(3). Using this diffeomorphism, Lie right and
left translations, it is therefore possible to map se(3)k × se(3)∗k to TxK × T ∗

xK with x ∈ K:

Πx : se(3)k × se(3)∗k → TxK × T ∗
xK ; (T,W ) �→ ((π∗ o L∗x) T, (L

∗
x o π

∗)−1 W )

We can now define the configuration dependent pair of admissible twists and transmitted
wrenches of a kinematic pair at a configuration x ∈ K as elements of the following Dirac structure
characterizing the kinematic pair:

DP (x) = Πx(T A(x),WC(x)) (32)

It is also possible, once coordinates are used, to give an expression of the structure matrices
expressed for the elements in sek(3)× se∗k(3):

F (x) =
(
T (x)
0p×n

)
and E(x) =

(
0q×n

W (x)

)
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where p = dim T A(x), q = dimWC(x), E(x), F (x) are n × n, T (x),W (x) are full-rank matrices
and such that kerW (x) = rangeTT (x), kerT (x) = rangeWT (x) and x is a kinematic state which
represents the configurations of the kinematic pairs.

Remark 2. Note that kinematic pairs which interact with their environment (for instance actu-
ators or other mechanisms along the freedom twists also define a Dirac structure on the space of
freedom twists, constraint wrenches and interaction twists and wrenches. The reader is referred to
[24, 29, 38] for detailed definitions.

3.2.5 The kinestatic connection network

By combining the two types of elementary constraints presented here above (i.e., the port con-
nection graph and the kinematic pairs) a complex power conserving interconnection (in the sense
of the definition given in the part I of [29]), relating the rigid bodies and the spatial springs of
a mechanical system, may be obtained. This interconnection structure defines on its port vari-
ables some constraint relations which are called the kinestatic model of the mechanical system
[22] as they consist of constraint relations on the wrenches and their dual constraint relations on
the twists. Therefore we shall call the interconnection structure composed of the port connection
graph and the kinematic pairs, the kinestatic connection network. The interested reader is referred
to [7, 4, 38] for the detailed analysis of this network and for its use in the analysis and design of
mechanisms. In this paragraph we shall characterize it in terms of Dirac structures deduced from
the Dirac structure associated with the kinematic pairs and with the port connection graph.

In the sequel, we shall give an expression of a Dirac structure associated with a kinestatic model
in the case where the inertias of all the bodies are taken into account. Hence a maximal tree of the
port connection graph G is given by the Lagrangian tree TB on which the bodies are connected.
Denote by TP the co-tree composed of the edges of the port connection graph with which the
kinematic pairs are associated. Note that the co-tree TP is not necessarily maximal if some edges
TS of the port connection graph correspond to spatial springs or ports: G = TB∪TP∪TS . Denote
by DG,TB

the Dirac structure on se(3)n defined by the port connection graph (see Sec.3.2.2) and
by DP the Dirac structure for the kinematic pairs (see Sec.3.2.4).

The “power pairs” belonging to DG,TB
must also satisfy the state dependent constraints of

the kinematic pairs. The resulting Dirac structure is therefore:

DK(x) =
{
(T,W ) ∈ se(3)n × se(3)∗n s.t. (T,W ) ∈ DG,TB

and (T,W ) ∈ (Πx)−1DP (x)
}

(33)

The space DK(x) is therefore defined by assembling the constraints corresponding to the port
connection graph described in Eq.28 and the constraints associated with each kinematic pair.

The admissible twists and wrenches satisfy:∑
i∈G

Wi© Ti =
∑

i∈TB

Wi© Ti +
∑

i∈TP

Wi© Ti +
∑

i∈TS

Wi© Ti = 0 (34)

where the first sum represents the power exchanged to modify the kinetic energy, the second the
power exchanged to modify the potential energy and the third one the power exchanged through
the kinematic pairs with the environment.

By Proposition 1.1 in [46] DKx
is a Dirac structure.

Remark 3. Note that for the sake of simplicity we did not consider that the kinematic pairs are
actuated. In the case that some of the kinematic pairs are interacting with the environment, the
definition of the Dirac has to be changed by augmenting the wrenches and twists by the wrenches
and twists at the ports of the kinematic pairs [29].
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3.2.6 Dirac structures and Implicit Hamiltonian systems

Using Dirac structures the generalized Hamiltonian systems may be extended to implicit Hamil-
tonian systems. Such systems were introduced by Courant [9] and are extensively used in the
analysis of symmetries in evolution equations [12]. Contrary to the statement in [9], it seems that
such structures play also a fundamental role in finite dimensional systems [44] [10] [28] [43] [29] as
we shall see below.

An implicit Hamiltonian system with ports is defined by a state space, a differentiable C∞

manifold, denoted by M, a vector-bundle over M called port interaction space and denoted by
Wx, a Dirac structure L(x) on the vector bundle with fibers: TxM×Wx × T ∗

xM×W ∗
x and a

Hamiltonian function H(x) ∈ C∞(M) by:

(ẋ, f,
∂H

∂x
(x),−e) ∈ D(x), x ∈M (35)

where x ∈M is the state of the system, the pair (f, e) are the external variables, also called port
variables and the minus sign corresponds to the sign convention ensuring that the power ingoing
the system is counted positively.

¿From the orthogonality condition, it follows that an implicit Hamiltonian system as the one
of Eq.35 satisfies the balance equation:

dH

dt
= 〈e, f〉 (36)

Hence, if the Hamiltonian function is bounded from below, the implicit port controlled Hamiltonian
system is passive and lossless. Using a kernel representation of the Dirac structure L(x) with
structure matrices:
F1(x), F2(x), E1(x), E2(x), the Hamiltonian system of Eq.35 becomes:

F1(x)ẋ+ F2(x)f + E1(x)
∂H

∂x
(x)− E2(x)e = 0 (37)

For a detailed exposure and analysis of such implicit port controlled Hamiltonian systems, the
reader is referred to [10] [28] [29].

3.2.7 Dynamics of a spatial mechanism

A complete mechanical network is obtained by assembling a set of rigid bodies, spatial springs
and kinematic pairs. Using the results of part I of [29] and the network structure described here
above, we shall now formulate the dynamics of such a system in terms of an implicit Hamiltonian
system [29].

Consider a mechanical network composed of nB bodies, nS springs and np kinematic pairs
interconnected through the port connection graph G.

Assume that the inertial properties of the bodies are all taken into account, so that the edges
associated with the bodies in G form a maximal tree of G.

The set of nB bodies and nS springs compose a set of port controlled Hamiltonian systems
defined in Eq.21 and Eq.22, which define the state space of the complete mechanical network:

X = (SE(3)× se∗(3))nB × SE(3)nS (38)

The port connection graph G with the kinematic pairs defines the kinestatic connection network
which relates the port variables of the set of rigid bodies and spatial springs. According to Sec.3.2.5,
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the constraint relations defined by the kinestatic connection network defines a Dirac structure,
denoted by DK(x) on its port variables according to Eq.33. Hence the kinestatic connection
network defines a power conserving interconnection [29] between the port controlled Hamiltonian
systems of bodies and springs.

Hence the dynamics of the mechanical network is an implicit Hamiltonian system defined on the
state-space of the energy variables X with respect to the Dirac structure obtained from the Dirac
structures of the energy storing elements and the Dirac structure DK(x) according to Theorem
1.2 in [29].

4 Conclusions

In this notes we have recalled in a first part the geometry of rigid body motion in terms of the
geometry of lines in R

3 and we have used the Klein form in order to identify the twists and
the wrenches. Then the use of reciprocity of twists with respect to the Klein form was used
to identify self-reciprocal twists with lines in the projective space P3 and twists and wrenches
with screw-vectors. In the second part we have used this identification of twists and wrenches
with screw-vectors in order to define the kinestatic model in terms of a Dirac structure and the
dynamics of spatial mechanisms in terms of implicit Hamiltonian systems. This formulation of
the dynamical model actually embeds in a unique representation different levels of description (in
terms of discrete topology, projective geometry, differential geometry) of spatial mechanisms. In
this way the symbolic and numerical computation on such models in enhanced and makes at all
possible the analysis and design of complex mechanisms. Furthermore the Hamiltonian structure
of the dynamical model makes possible the rigorous development of passive nonlinear control laws
as was already initiated in [38] [40] [27].
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