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ABSTRACT

A broadly applicable formulation for investigating design propagations in mechanisms is
developed and illustrated. Analytical criteria in terms of the variations of joint position vectors
and orientation meatrices for planar and spatial mechanisms are presented. Mechanisms are
represented using graph theory and closed loops are converted to a tree-like structure by cutting
joints and introducing new constraints. The Jacobian matrix in Cartesian space is then
transformed to Joint coordinates space. Two cases are considered: a pair of bodies remain
connected by one joint after cutting additional joints and a pair of bodies are disconnected after
cutting joints. Using this method, a designer has the ability to study the propagated effect of
changing a design variable on the design. The presented formulation is validated through a
numerical example of a McPherson strut suspension system. The system is analyzed and an
assembled configuration is computed after a change in design.

1 Introduction

Effects of design propagations due to change in design variables is a relatively new field of
study that has emerged as a result of more sophisticated computer-aided-engineering software.
The field of concurrent engineering has seen many advances in recent years such as those
exhibited in the following computer programs. DESIGNS (Silverstein et a. 1990), DAISIE
(Alder et a. 1989), SATISFICER (Gopaakrishnan et a. 1990), NEXT-CUT (Cutkosky and
Tenebaum 1990), CONCEPT MODELER (Serrano and Gossard 1988), STRUCTURAL
DESIGN EVALUATOR (Fisher and Nguyen 1989), GALILEO3 (Bowen and Bahler 1992),
STAURN (Fohn, et al. 1994), XCODOMAS (Burke et al. 1994), FDL (Imamura 1994), and
FRODO (Kolb and Bailey 1993).

The concept of graph theory applied to kinematic and dynamic analysis was used by
Wittenburg (1977) to smplify the representation of mechanisms using a computer. A
mechanism is modeled into a spanning tree where a body is defined as a node and a kinematic
joint is defined as an edge. If there are no closed loops in the system graph, the system is said to
have atree structure. If agraph isnot atree, an edge is cut in each independent closed loop to
form a tree structure, called a spanning tree (Tsai 1989, Bae and Haug 1987, and Bae et al.



1988). This type of formulation was implemented into parallel computational techniques for
real-time simulation (Hwang et a. 1988 and Hwang and Haug 1988). Cut-joints are used to
handle closed-loop systems to form a spanning tree that has no closed loops. Joints that are cut
in the topology analysis process are replaced by a set of constraint equations.

Congtraints between solid bodies are often characterized by conditions of orthogonality or
paralelism of pairs of such vectors. The origina work for deriving a library of possble
constraints was presented by Haug (1989), and was implemented into a commercia dynamics
analysis software called DADS (Cadsi 1995). The study of the derivatives of the mechanism’s
performance with respect to a design variable is called design sensitivity analysis (Tak and Kim
1990). The work by Haug and colleagues is further expanded here to include the joint position
vectors that characterize a joint location with respect to a local body reference frame and
orientation matrices that define joint orientation. These parameters are included as design
variables to study design propagations. Derivatives of these vectors with respect to design
parameters are computed in order to calculate the change in design using the generalized
inverse method.

First, kinematic constraints due to cutting joints will be developed and differentiated with
respect to design variables. Secondly, the Jacobian matrix is transformed from Cartesian
coordinate space to Joint coordinate space. Cutting joilht®sult in two possible cases: (a) a
pair of bodies remain connected by one joint or (b) a pair of bodies are disconnected. The two
cases will be addressed. Finally, a numerical example will be used to illustrate the formulation.

The analytical formulation developed in this paper and validated through numerical examples
IS ultimately intended for implementation into computer-aided-engineering environments to
increase the automation of mechanical design. It can also be used to study different scenarios of
a particular design. The ultimate goal is to extend this work to include the propagation of
dynamics in mechanisms and machines.

2 Cut-Joint Constraint Formulation

Cut-joint methods (Wittenburg 1977 and Haug 1989) are used to handle closed-loop
systems to form a spanning tree that has no closed loops. Joints that are cut in the topology
analysis process are replaced by a set of constraint equations. Partial derivatives of basic
constraints with respect to design variables are derived in Cartesian coordinates. Figure 1
depicts a pair of solid bodies denoted by bbdpd bodyj. The symbolsQ' and O;/ denote

the origins of joint reference frames embedded in badsesl bodyj, respectively. The global
reference frame igyz, the body reference frame igy'z’, and the joint reference frame is

X"y"Z"

Fig. 1 Kinematic notation for vectors

In this section, four types of constraints are considered. The combination of these basic
constraints can be used to define the kinematic joints between two links. The formulation in this



section is aimed at determining partial derivatives of these basic constraints and extending the
work to include the variations of joint position vectors and orientation matrices.

2.1 Dot-1 Constraint. A condition that a pair of body-fixed nonzero vectors a, on body i
and a; onbody j are orthogonal is that their scalar product be zero, such that

®%(a,a,)=a’a, =0 (1)

where the superscript d1 denotes the scalar product (dot product). The symbol @ is used to
indicate a constraint. The vector a, can be written as a, = A,C,a", where the _" symbol

i~ij%io oo

indicates vectors resolved with respect to the joint reference frames, A is the direction cosine
meatrix from the body reference frame x'y'z to the globa reference frame xyz, C is the
transformation matrix from the joint reference frame x"y"z" to the body reference frame
X'y'z'. Thevariation of a, keeping C; asadesign variable, can be written as

d, =0A Ca'+A L’ (2

Define a global vector dit, called the virtual rotation of the transformation matrix A from the
body reference frame x'y'z' to the global reference frame xyz. Also define di=0AAT, as a

skew symmetric matrix (Haug 1989), where the tilde operator (~) on a vector
a= [ax a, aZ]IT , generates the following skew symmetric matrix.

0 -a a
a=|a 0 -a 3)
-a, a O

In order to study the variations of body orientations, define the vector & ; asaloca vector,
called the virtua rotation of the transformation matrix C; from the joint reference frame

xX"y"z" to the body reference frame x'y'z' . Also define &] as a skew symmetric matrix such
that & =JC,C; . Therefore, the variation of A can be written as dA = AJit = JA and the

ij ]

variation of C can be written as &C; &,l i -

Substituting for 6A , 9C;; and the following property Ai{,— = ii}A into Eq. (2) yields

@ éﬁAlcljaln-l_A &chlja” (4)
Replacing the expression for @; into Eq. (4) and using the relationship ab = ~ba yields
=-adm - §&; ®)
The variation of the dot-1 constraint function of Eq (1) can be written as
50 =5(ala)=al dai+ a' da; ©)
Substituting for da; and da; into Eq. (6) yields
X =-ajgom -ajak; -a/a,dn —a'a &) 7

2.2 Dot-2 Constraint. Orthogonality of the body-fixed vector a; and the vector d; can
be written as:



I (a, ,dy) = adeij =0 (8)
Referring to Fig. 1, the vector d;; between two bodies can be written as
d;=r,+s; -1 -5 )
where s; are the joint position vectors that define the basic dimensions of a body. The

variations of EQ. (9) is
0djj =drj+0ds;—dri —8s; (10)

Note that s;, throughout this discussion, is not considered as a constant and therefore its

variation will be kept as avariable. Thevectors S; and Sji canbewrittenas s; = Ai S and
si = A;jS;ji. Thevariation of the joint position vectors can be written as

@j = _.sjdn-i +Ai55ﬂlj (11)
Substituting for ds; and ds; into Eq. (10) yields
Ay = - —§,dm, + A ds; + 50 - A5 (12
The differential of the dot 2 constraint function of Eq. (8) can be written as
d'2=d(al di) =dfda +a 84 (13)

Performing the derivation and substituting for ad; and da, yields
a0 =ald -a'a +(a's - dja )om —a §d,
a'A 08 —alA & —dia & (14)

2.3 Spherical Constraint. A spherical joint is atype of constraint that requires a pair of
points on two bodies to coincide. A necessary and sufficient condition for Q' and Oj

ji
coincideisthat dij =0;i.e,

®%(O},0p) =1, +s, =1, =5, =0 (15)
Taking the variation of Eq. (15) and substituting for ds; and Js; yields
X =&, - —5,am, +A 55 + 501 —A s (16)

2.4 Distance Constraint. A distance constraint requires a specified distance between a
pair of points. A necessary and sufficient condition that the distance between O;' and Oj

jir
shownin Fig. 1, be equal to ¢ # 0 isthat

®*(Q},0},¢) =did; = ¢*=0 (17)
The differential of the distance constraint of Eq. (17) IS
ap%e = 2df & =2di[ & ~ &, — §,0; + A 3B + 50T ~ A& | (18)

2.5 General Formulation of Basic Constraints. All constraint equations can be written
in the form

q)(riyAi1Sj1Cij1rj1Aj1Cji7Sji):O (19)
The differential of both sides of Eq. (19), noting that sand C are variables, yields
ob = ¢ri&i +¢ni5r[i +CD & +CD 5” +¢'5§" +¢S’ji&'ji

CDE”&” cp & =0 (20)



In order to minimize the size of the system to be solved, a relative joint coordinate system is
adopted. Inthe following section, the Jacobian matrix in Cartesian coordinate space denoted by

®, is transformed into joint coordinate space denoted by ®, where ®, = [o‘rb, /ohj]l and q is
the vector of relative joint coordinates. In order to convert a closed loop system to a tree

structure, ajoint is cut and an additional constraint is introduced as shown in Figure (1).
The general form of Eq. (20) can be written in alinearized form as

5D = d &z, + 7, 57; + D' OE" + g &) (21)
o, = [&i 5”1]]

where the virtual displacement for bodiesi andj are 5, = [5{_ m]T q T
1 I 1 an

and the virtual joint position vector is g/ :[531 55'ji]]T and the virtual joint orientation vector
is &l =[&{,~ &}i]lT' The coefficients of virtual displacement are defined as ®©, = [(Dri dnni]
and o, :[cbrj CDHJ}. The coefficients of linkage length and rotation are defined as
o, =[o

S

(DS'H]I and (DE” = [CDEH (DEJ" ]l

Sj

3 Transformation of Jacobian Matrix from Cartesian Space to Joint Coordinate Space
3.1 Derivation of the Virtual Rotation. The orthogonal transformation matrix A; from

the body j reference frame to the global reference frame can be written in terms of the
transformation matrix A; from the body j reference frame (xjy;z ) to the joint reference

frame of body i (X{'y'Z'), as Aj =AiCijAjj. Thevariationof A, iswritten as
OA;=3ACjAj+AidCjAj +AiCij A (22)
Substituting for oA, &C; into Eq. (22) and multiplying by the virtual rotation matrix yields
O,A, = A CA] +A EICAL+AC, AT AY 23)

i “ij ij i i
Using the definition for &, dA” can be written as O Aj =37t Aj. Substituting for AA;
yields Ai Cjj Bﬁ.j = &it; Ai Ci where 8T can be obtained from the relative coordinate variation
a; , such that

5””’ :Hj(Aqu)d:]j (24)
and H;(A;,q;) isatransformation matrix that depends on the orientation of body i and on the
relative coordinates Aq; , which is defined for each type of joint.  Using the definition of A,

Eqg. (23) can be written as

A, = OTIA;+8E A+ A (25)
Thus, the virtual rotation of body j can be expressed as
&Tj = Jr +&ij +5r[ij (26)
Furthermore, substituting Eq. (24) into Eqg. (26) yields the virtual rotation
dTj :d-[i-l_&ij-l_deqj (27)

3.2 State Vector Representation.  Referring to Fig. 1, the origin of body j reference
frame can be located by the position vector given by

5



ri=ri+s;+dj (28)

Taking the variation of Eqg. (28) yields
6r,~ =, +5$j + &jij (29)

The vector d; can be written as d; = A;C;d(q;) . Taking the variation of d; and substituting
for oA, and &C; yields

~ od.
djij = éﬁidij _dij&i'j +—”&1,’ (30)
o
Substituting for &d;; and Js; into Eq. (29) and using the relationship ab = -ba yields
- X,
&j = +ﬁi§j+Ai&'j +5ﬁidij _dij&i'j +E]d:]j (31)
j
Collecting terms and simplifying yields
pr) ' djii
&j:&i-l_ﬁi(rj_ri)+Ai£j_dij&ij+Ed}j (32
j

Adding a common term (7 ;3 ) to both sides of Eq. (32), and using Eq. (27), Eq. (24), and the
relationship @b = —ba yields
~ oo
a; +T,0 = +10m +A % —d; & +(E”+ I.FiHi)&Jli ey (33)
j

Equation (48) and the virtual rotation of Eg. (41) can be combined in matrix form as

[Br; +F;6mO [ +fiémO [AL . @1+F1H1D [ —dy
ﬁq, arE R (3
Hi

4
E 5T[j E: E OTT, E+ ED %65]
Equation (34) written in the state-vector notation is
&j:&i-l-Bjdqj-l_Mi&'j-l_Nj&i'j (39)
where the state variations of body i and j aredefinedas 5 — [5{_ + T m]T and

&, =[5f1+ﬂ5ﬂj @Tj]]T, where B; is the velocity transformation matrix written as

.
B =|—+FH. H : .- : . . _ AL
g i | andthevirtud joint location transformation matrix is Mi = B H
I

and the virtual joint orientation transformation matrix between bodies j and i is
N, =[ﬂ _a”, |]]T. In order to represent the constraint variation in terms of state vector
notation, define 8z, = T:8% gng 8z; = Tidz; wherethe virtual displacements are

& =[a& o] ad & =&, JITI-]IT and the transformation matrices T, and T; are

a -fiC a -riC
definedas T'=F | H TiTRK | B wherel istheidentity matrix. Substituting for Jz

and oz; into Eq. (21) yields
O = 7 Tidz; + Pz T 52 + Pg' O’ + dgids’ =0 (36)
The Jacobian of the constraint function can be written in terms of the state vector notation as



¢, =®,T and &, =, T, (37)
Substituting Egs. (37) into Eg. (36) yields the general expression for a constraint variation in a
state vector representation as )
3D = 3,52 + D3 52 + D' 8’ + dg 88’ =0 (38)
In order to simplify the computation of the orientation, the virtual rotation &, is transformed to
the virtual Euler parameters dp using the following transformation

&, =2AE;p; (39)
where p; = [e,.o,e,.l,e,.z,ejs] and E; isthe Euler parameter semi-rotation matrix defined as
re e -e eL

5 D 1 0 3 D
Ej = [—e” ej + ej0| ] = D_ez e3 eo _el 0 (40)

He, -e e ¢H
A normalization constraint given by
® =p/'p,-l=¢'+e +e +e -1=0 (41)
Is imposed to restrict the four Euler parameters and to express the three relative degrees of
freedom. In addition, the transformation matrix C;; can be represented as C; = E,G]
where G, isthe Euler parameter semi-rotation matrix defined by
e, e e -

1 0 3 2

G, =[e.& +el]= B—ez —e, e

3 0

e
He e -e e

3 2 1 0

1

MmO

(42)

4 Evaluating the Jacobian for a Cut constraint

After cutting joints, the pair of bodies may become disconnected or remain connected by one
joint. Therefore, two cases must be considered in evaluating the Jacobian matrix for a cut
constraint.

4.1 Case 1: A Pair of Bodies Remains Connected by One Joint, after Cutting
Additional Joints Between the Pair.  Assume bodiesi and j are connected by two kinematic
joints. Choosing joint 1 to be cut, body i is the inboard body of body j (Fig. 2a).

cut joint ’ J °

\i/ 0 cut joint e

/

/ ()

[ ° \
@~

:

o]

Base Body °

Fig. 2 After cutting ajoint (a) a pair remains connected, (b) a pair is disconnected
In this case, the state variation of body | can be represented in terms of the state variation of

body i by Eq. (35). Substituting Eq. (35) into Eq. (38) and recognizing that ®% +®3 =0
yields
&):q)ijBidqi+¢21Mi£i+qlszi&i'i+(D§j£j+q)iii&ij 43)



4.2 A Pair of Bodiesis Disconnected after Cutting Joints. Assume that the joint
connecting bodies i and j is cut and that body p is the junction node of the two chains that
contain bodies i and |, respectively (Fig. 2b). In this case, the state variation of body |
cannot be represented in terms of the state variation of body i since no relative coordinates exist
between bodies i and j. Therefore, the state variations of bodies i and j must be written in
terms of the state variation of their common junction node p such that

& =3&_,+B;& +M,_.05_;; + N &y (44)

Equation (44) can be recursively used to obtain the state variation of body i in terms of the

state variation of its junction p and those of the of relative coordinates along the chain as

azi = &i—Z + Bi—ldqi—l +M i-Z&'-Z,i-l + Ni-l&i'-Z,i-l + Bidqi +M i-l&,-Z,i-l + Ni&i'-l,i (45)
Simplifying and writing in terms of a summation yields

& =, + z (Bka:lk +M 05t Nk&r(-l,k) (46)
k=m
Substituting for & and &; into Eq. (61) yields
b=, |:52p + Z (Bkd:lk +M 108y N 'k—l,k):|
k=m

]

0, {62,3 *y (B +M BBy + Nkaz'k-l,k)} +O,& +0,&"  (47)
Collecting similar terms and rearranging yields

O = (D, +®, &, + D, Y (B +M By + Ny
k=m

+®, Z By + M, 408 1 +N &}y, )+ P 08 + @, &1 (48)
where ®, +®, =0. THQ constraint variation, written in terms of the Jacobian is
b = ®,& (49)
where ®@q = [95,Br...®5Bi | ©5Mmn-1...®3Mi1 | ®5 Nim...03 Ni| 3, Bo...
®3 Bj | D5 Mn-1...®3 Mj-1| @3 Nn...d35 N; Idnsrlsz”] (50)
and & = [y O 08y e OBy |G g e OBy 1O O
. S . S ST (5)

The numerical algorithm used to compute an assembled configuration due to a design
propagation is depicted in Fig. 3.



Fig. 3 Algorithm for computing kinematic design propagations

In order to validate the foregoing analysis and to demonstrate the numerical solutions, a
spatial mechanism is analyzed using the presented formulation. Section 5 will illustrate the
formulation using the analysis of athe McPherson strut suspension system.

5 Numerical Example

The McPherson strut suspension, shown in Fig. 4a, has been simplified as a two-body system
comprising a chassis and a wheel assembly with three joints. Since the mass of the lower control
arm, strut, rack and tie rod are insignificant compared with the chassis or the wheel assembly,
they are usually modeled as composite joints. The model comprises a composite Revolute-
Spherica (R-S) joint, a composite Spherical-Trandational (S-T) joint, and a composite
Trandationa-Distance (T-D) joint connecting the chassis and the wheel assembly.

=
Chassis ~- spherical joint

Piston Rod

Strut Joint

Wheel Assembly

&7
Lower Control‘\gﬁher ical Joint

Arm (a) (b) (C)

Fig. 4 (a) McPherson strut suspension system (definition of reference frames)
(b) Graph representation of the system and (c) Revolute-sppherical joint

The McPherson strut suspension system has two degrees of freedom with respect to the
chassis, i.e., jounce and steering. To form a spanning tree structure, the composite R-S and the
composite T-D joints are cut. The system belongs to case 1 and the graph representation is
shown in Fig. 4b.

The R-S joint, shown in Fig. 4c, connects the chassis by a revolute joint and the wheel
assembly by a spherical joint. It has four relative degrees-of-freedom, one for the revolute and
three for the spherical joint. Thus, it has two constraint equations.

where partial derivatives of the variation of the basic constraints (Eg. 7, 14, 16, and 18), written
in terms of their coefficients, are presented in Table 1.



Table 1 Partial Derivatives of Basic Constraint Functions

Constraint
Function

J

()]

Sij

ji

&

Dot-1
d1
" (a;,a)

T~

0

0 - &

Dot-2
®*(a;,d;)

(aing —dJé})

T

a, Aj

Spherical
P*(Q)1,0})

1j 1

éij

Aj 0

Distance
CD diS(O(r O-'-'

(I i

ZdijTNqu

- 2dij A

2diA 0

V. SPATIAL SLIDER-CRANK MECHANISM
Consider the gspatial dider crank mechanism shown in Fig. 4, having a revolute joint, a

universal joint, and a trandlational joint.

Connecting

Crank

Ground

Spherical joint

Fig. 4 Spatial slider-crank mechanism

Connecting

This system has four relative generalized coordinates q=[q, q, @, q,]', g, for the
revolute joint, g, and g, for the universal joint, and g, for the translation joint. To form a
spanning tree, the spherical joint is cut, as illustrated in Fig. 4b. The system has three scalar

constraint equations.

sph — _ _ —
e =r,+s, -s,-r. =0

(5.1)

The tree graph represents a pair of links that are disconnected after cutting a joint (case 1). For
a given initial estimate that does not satisfy the constraint function & , the set of linear

equations written as

®,(a®)@™ =-o(q")

10

(5.2)




are solved simultaneously for a correction 3q™. The corrected term is added to the estimate
q® to obtain an improved estimate such that

qd = q® +x® (5.3)
In this example, the linear equations are written as
" = e (5.4)

where <Dqsph is the Jacobian matrix in joint coordinate space. The Jacobian matrix ®*" in
cartesian space can be transformed to joint space using velocity transformations as

O =[DF'B,, |OF'B, | DF'B,, | (55)
where B, isthe transformation matrix for the revolute joint

B _— [Flhol[
=~ Hh H (5.6)
hy=A,Cy0 0 1 (5.7)
and B, isfor the universal joint
B _— [th32 F2g32 |:
uni Hh32 g32 H (58)
h, =A,C,[0 0 1] (5.9)
0o = ACuAL ()0 0 1] (5.10)

where the rotation matrix is
Q:()S’(Clz) _Sin(Q2) ot

A 321" (Q2) = %in(cb) CO{QZ) OD

E o 1f (5.11)
For the trandational joint, the velocity transformation matrix is B,,,s defined as
_ mm |:
Birans = EO E (5.12)
Ju=ACyl0 0 1 (5.13)
where
O =[-1 F+3,] (5.14)
O =[-1 ~(F,+5,)] (5.15)
Theinitial estimates of the position and orientations of the ground are presented in Table 2.
TABLE 2
Pasition and Orientation Estimates of the Ground
bOdy X y 7 € e, €;
ground 0 0 0 0 0 0
Initial estimates of joint attachment vectors in the body reference frame are presented in Table 3.
TABLE 3
Joint Attachment vectors in Body Reference Frame Estimates
s X y z s X y z

11



Su 0 0 0 S 0 3.8637 0

S 2 0 0 Se 0 0 0
Su -2828 0 0
Transformation Matrices from Joint Coordinates to the Body Reference Frame are as follows.
M 0 1[ 0 1 oC M 1 O[
U
SL 0 07 g) 0 17 g) 0 17
1 OE 0 oH 0 od

Estimates of generalized coordinates are q = [45° -30° 0° O°]] .

For agiveninitial estimate, the Newton-Raphson iteration method is used until the constraint
violations are satisfied. A linkage length or a transformation matrix from joint coordinate to
body reference frame may be changed. Therefore, joint attachment vectors may be changed
(eq., 3;11 the revolute joint attachment vector in ground reference frame.) Once the linkage

length has been changed, the constraint function is violated, and three options can be performed:
(1) The generalized coordinates q are changed such that

(6q,
®, *'B,, 50, + P, "B +, "B, 0 [=-0
Zy revéql Z, tran§q4 Z, uni %qg H (516)
(2) The linkage lengths s* are changed such that | |
cDilSFhM 05301 + q)izsm M05303 + (DiZSFhM 35332 + chlz 5Slz + q)s'215$21 =P (517)
AL AL
where M, = Ho H M, = Ho H (5.18)

®; and P, are spherical constraint given in Table 1.
(3) The generdlized coordinates g and linkage lengths s are changed such that

sp
cDil hBrev

. [6g, [ .
5ql + cDi Sphlvl 05501 + cDi SprB tran§q4 + CDZ SprBuni qu H+ q)i SphM 05503
1 2 2 q3 2

+®, M Bs, + P, 35, +®, 8, = - (5.19)

Initial estimates are provided for an assembled configuration. The simulation results due to
changing the spherical joint attachment vector in crank reference frame s,

from[-2828 0 1]'to [-28 02 01] are presented in Table 4. Results of propagating the
change in this design are illustrated in Fig. 5.

TABLE 4
Simulation results dueto achangein s,
variables q S q and s,

Su 0oo]T [0.025 0.0311538 [0.008368 0.0111318
0.0397479] T 0.0122555] T

S [03.86370]T [-0.025 3.83255 - [-0.008368 3.85257 -
0.0397479 T 0.0111318]T

Se ooo]T [-0.0397479 -0.025 - [-0.012255 -0.008368 -
0.0311538] T 0.0111318]T
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S [200]T [2.05014 0.00607691 [2.01654 0.000794346

0.025] T 0.008368] T
Su [-2.80.20.1]T [-2.80.20.1]T [-2.80.20.1]T
d, 44.893707 45 45.090633

d.,d, -26.0852, - -30, 0 -27.367386, -1.3609008
2.0454
d, -0.0184005 0 -0.0111318
@ 1.26576e-05 1.11076e-16 1.1
321e-06
Iterations 2 1 2

Fig. 5 Changes in the mechanism due to a design propagation
It is required that the vector d;j # O between joint definition points O and Oj, be
orthogonal to the axis of rotation of the revolute joint h;; (a unit vector along the axis of rotation
of the revolute joint). It is also required that the distance between the origins O;' and Oj
(lower control arm length ¢ ) be equa to f/..#0. The two additiona constraints are

®%(h;,d;) =0 and ®*(Q/",0/'l5_s) =0. Thetwo constraints are combined into one set as

P2 hid.

o Lbdis} i [dgdu]_ié—J -0 o
where h; canbewrittenas h; =hy,. s =A,Cp,rs[0 0 1" and the distance d; can be
writtenas d; =d,,5 ¢ =T, + S5 s I, +Spr_s Where the subscript 21R-S denotes the R-S joint
between body chassis and wheel assembly. The Jacobian matrix of the constraint function of Eq.
(52) in Cartesian space can be written as @, = [d)sz ¢;iS]IT ,
o =|hj ~h{(F, +5)] and

q)i(jjis = 2d1|[| _(Fl + 51)]] ! where ri = r2 = r1 +SlZS—T + dlZS—T'

where
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and the vector d,, , canbewrittenas d,s  =0;0, and g, =A,C,eA%[0 0 1],

where A;ph Is the transformation matrix of the spherica joint reference frame between wheel

assembly and chassis. Since the T-D joint, connects the chassis by a trandlationa joint and the
wheel assembly by a distance joint, it introduces an additional relative degree-of-freedom which
is the relative translational coordinate d;. A new vector | is introduced (as shown in Fig. 5)

suchthat |, =d; —h;q,. The constraint equation that characterizes this joint is
O =il -7, =0 (53)
where dij =dyrp =1 =Sprp and hyyrp = AIClZT—D[O 0 1]]T-

T:trandational joint
D:distance joint

Fig. 5 Translational-distance joint
Taking the variation of Eq. (53) yields

ST = 2A7[ & +A & - 50 ~ & ~ A +(5 +y0)

+hy Q& —hy ;| -2y 5dr g (54)
The Jacobian matrix of the T-D constraint in Cartesian space is
| -
T-D — J
o0 =[0, o, ][O | } (55)
and can be written as
o] =[2] -2(5,+7)] (56)
For the T-D joint, the Jacobian matrix is
@, ° =-2h, (57)

The uncut S-T joint connects the chassis with a spherical joint and the wheel assembly with
a trangdational joint. It has four relative degrees of freedom qg ; =[q, g,] , three for the

spherical joint and one for the trandational joint. Three relative rotational coordinates of the

spherical joint can be expressed using Euler parameters to avoid orientation-associated
singularities. The Euler parameters are denoted by e,,e,.e, e, suchthat p,=[e, e e, ]

21 3

and the normalization @, =p;p, —-1=€)+€f +€& +&; —1=0 isimposed (Eq. 41).
Since a trandationa joint does not have a rotational degree of freedom, the transformation

matrix Aj of the S-T joint is smply the same as that of a spherical joint, thus A/ = A2, =E,G].
The velocity transformation matrix B; can be expressed as

14



BiS_T:|[BSph Btran]l (58)
where B, =T, I]]TAlclzs_TZEj is the velocity transformation for the spherical joint, and
By = |0 O]]T is the velocity transformation vector for the transational joint, where

0; =ACps AL [0 0 1] and the transformation matrix A, can bewrittenas A, = A,C,,¢ (AL, .

When a given initial estimate does not satisfy the constraint equations ®, the set of linear
equations ®,80=-® are solved smultaneously. The variables 9 are updated until the

constraints are satisfied. In this example, the linear equations are written as

orF 0 Ta,]_[-o"
[(DJ;P ¢][ mJ'LW‘D} &9

where the (2x5) Jacobian matrix ®;° and the (1x5) vector ®;"", in joint coordinate space,
are transformed from the Cartesian space @, (where &, has dimension 2x6 and ®,° has
dimension 1x6) by using the velocity transformation matrix B, such that ®; > = ®,; "B
and @, 7 =, "B Initial estimates of the position of the chassis is given as
[x y z]=[00 00 055" and the orientation in terms of Euler parameters as

e e e]=[00 00 00].

Initial estimates of the joint position vectors in body reference frame are entered into column 2
of Table 2. Estimates of transformation matrices C; from Joint definition frames to body

reference frames are computed as

[0.000256112 —0.99961 —0.0261336LC 0-10 g M 0 15
szgo.oowgﬁzs 00261336 —0.99961 E Cp.=C,r=C,, =1 0 o A cm,f% 0 0
g 0.999904 0 0.0098001 O 001 ® 1 of

and the corresponding Euler parameters P; are computed as P =[0:508967 0491 -0.50898 0.496811]
P,..=[0707107 0 0 0707107 P, =P, =[0707107 0 0 0.707107] and P =[05 05 05 03]

and estimates of the generalized coordinates are 0.=[4v2 0 0 _]/ﬁ]T, g, =-0425, and
g, =0305. The initia estimates do not satisfy the constraint equations ®. The Newton-

Raphson iteration method is used to update the generalized coordinates q. The agorithm
converges within 2 iterations within a tolerance of 10™° and the set of new generalized

coordinates are computed as.  p, =[06979 —-00320 -00529 -07137]', g, =-04337,
and g, = -0.2760. Once the configuration changes, the constraint equations are violated. There
are five possible methods to compensate the constraint violations. Those methods are:
(1)  Changethe generalized coordinates g =[p; d, 0| by iteratively solving
qung_quS-T + CDq3a:]3 =-0 (60)
For a change in design parameters of the ST joint postion vector s, from
[05011 11162 01998]' to [05 10 0], only alowing the generalized joint variable to
change using Eq. (60) while keeping invariant joint position vectors, the Newton-Raphson
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iteration method is used to compute an assembled configuration which is entered into column 3
of Table 1.

A designer, however, may opt to have constant generalized coordinates but alow the
automatic computation of new joint position vectors, hence, changing the dimensions of links.
Therefore, the second method can be used.

(2 Change the joint position vectors §; by iteratively solving

CDiz M 1&’1254 + q)sm_s @m—s + CD%R_S &’zm-s + CDS,m_D 5512T-D + q)s'm_D &,ZlT-D =-0 (61)
Simulation results due to changing s,,s_; using Eq. (61) are entered into column 4 of Table 1.
A schematic illustrating these two methods is shown in Fig. 6. Method 1 has resulted in
changing only the generalized coordinates without changing the joint position vectors. Method
2, illustrated in Fig. 6b, has changed the joint position vectors and therefore, has changed the
structural configuration.

Fig.6 (a) The mechanism after allowing a change in the generalized variables
and
(b) the mechanism after a change in the joint position vectors

Simulation results due to allowing changes in both the joint position vectors and the
generalized variables can be computed using the following method.
(©)) Change the joint position vectors s, and generalized coordinates q by iteratively solving

q)zz BS_T&:]S-T + ch3 dqs + q)zz M 163'1234 + ch'm_S 63’21R-s + cbym_s 63’21R-s

+chm_D £12T—D + CDS'ZH_D &,ZlT-D =-0 (62)

simulation results using Eqg. (62) are presented in column 6 of table 1.
(4) Change the joint position vectors s, lower control arm length |, ¢ and tie rod length

|,_, by iteratively solving
CDiz M 1@254 + q)sm_s @m—s + chQlR_S&’zm-s + ch'm_D 5512T-D + CD%_D é’21T-D + ch A== (63)

Simulation results using Eq. (63) are entered in column 5 of table 1.
5) Change the joint position vectors §;, generalized coordinates g, lower control arm

length |__ , and tierod length |__ by iteratively solving

rR-s !
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cbzz Bg_quS-T + ch3 d:]3 + cbzz M 1&’1254 + ch'mR_S &’zm-s + cbym_s &,ZlR-S
+chm_D £12T—D + ch'ZH_D &,ZlT-D + CD|d =-® (64)
Simulation results for computing an assembled configuration using Eq. (64) are presented in
column 7 of Table 1. It is noted that only a few number of iterations is required to converge to
an assembled mechanism.
Table 1 Simulation results due to a change in s,5_;

1 2 after 3 4 5 6 S, q
variables initial q s, S S; q | 1I
assembly T ! R, ro
ql |j).6980 [ |j).6870 [ |j).6995 [ |j).6993 [
0.0320 .0784 .0199 .0166
|1—0.0529|:| |jj0.0912|:| |jj0.0666|:| |jj0.0686|:|
gO.7l37E QO]lGGE QOFHZE QO.7114E
q -0.4337 -0.3638 -0.4061 -0.4106
2
q 0.2760 0.2349 0.2799 0.2806
3
Soer [9501] 950 950 950 950 950
1162 .0 .0 .0 .0 .0
.1998 ﬁ) E ﬁ) E ﬁ) E ﬁ) E ﬁ) E
S'l |:| 0.33 |:| |j).3647 |:| EP.3551 |:| |j).3485 |:| |j).3449 |:|
2R-S
1735 1148 1152 1419 1421
0.3923 0.4365 0.4246 0.4162 0.4116
S'Q D0.0SO7|:| D0.0813|:| D0.0731|:| D0.0674|:| D0.0642|:|
1R-S
.0321 .0914 .0909 .0649 .0644
0.2044 0.1580 0.1709 1797 0.1846
S'Q |:| 0 |:| |j).0298 |:| |j).0210 |:| |j).0039 |:| |j).0046 |:|
1T-D
2675 2597 .2620 2663 2663
0.3748 0.3931! 0.3876 0.3772 0.3776
S'Q |:|0.07 |:| |j).0424 |:| |j).0506 |:| |j).0665 |:| |j).0658 |:|
1T-D
g) .155 1627 .1604 .1561 1562
0.186 0.1645 0.1709 0.1831! 0.1827
| 0.203 0.2326 0.2208
R-S
| 0.3742 0.3955 0.3787
T-D
7071
PlZS—T O 0 C
Ul o Ul
§.7071E
.5090
PRR‘S BJo 491 L
|:|—O.5040|:|
Q).4958 E
.5
P12T—D B 5[
@'SD
[0
CD norm 0.000672544 0.00015806 0.000348392 0.000564039 1.85401e-05 0.000647021
Iterations 2 3 3 2 3 2

6 Conclusions

An analytical formulation for studying kinematic design propagations for planar and spatial
mechanisms is presented. The formulation presented in this paper and illustrated by a numerical
example demonstrates the validity of a general purpose formulation and experimental computer
code for the computation of an assembled mechanism due to a change in design parameters.
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A mechanism was shown to be modeled using graph theory and closed loops were converted
into atree structure using a cut-joint constraint formulation. It was shown that this formulation
can be derived with respect to design parameters to obtain kinematic design propagations. Basic
constraints were derived allowing for the variation of joint position vectors and orientation
matrices written in terms of Euler parameters. A designer may use this experimental code to
study different scenarios or test a new design.

It was shown that the Jacobian matrix in Cartesian space can be transformed to Joint
coordinate space. The use of relative generalized coordinates in a recursive formulation has
simplified obtaining the differential variations. It was shown that starting from an initia
configuration that satisfies the independent constraints, an iterative technique can be used to
compute the resulting variations. The method has showed to be applicable for a variety of
design parameters.

The ultimate goal of this research is to obtain an analogous formulation for the variationa
characteristics of dynamics parameters during a design cycle. It will be advantageous to a
designer, a kinematician, or a dynamicist to obtain relative velocities, accelerations and forces
due to a change in the design.
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