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ABSTRACT
A broadly applicable formulation for investigating design propagations in mechanisms is

developed and illustrated.  Analytical criteria in terms of the variations of joint position vectors
and orientation matrices for planar and spatial mechanisms are presented.  Mechanisms are
represented using graph theory and closed loops are converted to a tree-like structure by cutting
joints and introducing new constraints.  The Jacobian matrix in Cartesian space is then
transformed to Joint coordinates space.  Two cases are considered: a pair of bodies remain
connected by one joint after cutting additional joints and a pair of bodies are disconnected after
cutting joints.  Using this method, a designer has the ability to study the propagated effect of
changing a design variable on the design.  The presented formulation is validated through a
numerical example of a McPherson strut suspension system.  The system is analyzed and an
assembled configuration is computed after a change in design.

1  Introduction
Effects of design propagations due to change in design variables is a relatively new field of

study that has emerged as a result of more sophisticated computer-aided-engineering software.
The field of concurrent engineering has seen many advances in recent years such as those
exhibited in the following computer programs: DESIGNS (Silverstein et al. 1990), DAISIE
(Alder et al. 1989), SATISFICER (Gopalakrishnan et al. 1990), NEXT-CUT (Cutkosky and
Tenebaum 1990), CONCEPT MODELER (Serrano and Gossard 1988), STRUCTURAL
DESIGN EVALUATOR (Fisher and Nguyen 1989), GALILEO3 (Bowen and Bahler 1992),
STAURN (Fohn, et al. 1994), XCODOMAS (Burke et al. 1994), FDL (Imamura 1994), and
FRODO (Kolb and Bailey 1993).

The concept of graph theory applied to kinematic and dynamic analysis was used by
Wittenburg (1977) to simplify the representation of mechanisms using a computer.  A
mechanism is modeled into a spanning tree where a body is defined as a node and a kinematic
joint is defined as an edge.  If there are no closed loops in the system graph, the system is said to
have a tree structure.  If a graph is not a tree, an edge is cut in each independent closed loop to
form a tree structure, called a spanning tree (Tsai 1989, Bae and Haug 1987, and Bae et al.
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1988). This type of formulation was implemented into parallel computational techniques for
real-time simulation (Hwang et al. 1988 and Hwang and Haug 1988).  Cut-joints are used to
handle closed-loop systems to form a spanning tree that has no closed loops.  Joints that are cut
in the topology analysis process are replaced by a set of constraint equations.

Constraints between solid bodies are often characterized by conditions of orthogonality or
parallelism of pairs of such vectors.  The original work for deriving a library of possible
constraints was presented by Haug (1989), and was implemented into a commercial dynamics
analysis software called DADS (Cadsi 1995).  The study of the derivatives of the mechanism’s
performance with respect to a design variable is called design sensitivity analysis (Tak and Kim
1990).  The work by Haug and colleagues is further expanded here to include the joint position
vectors that characterize a joint location with respect to a local body reference frame and
orientation matrices that define joint orientation.  These parameters are included as design
variables to study design propagations.   Derivatives of these vectors with respect to design
parameters are computed in order to calculate the change in design using the generalized
inverse method.

First, kinematic constraints due to cutting joints will be developed and differentiated with
respect to design variables.  Secondly, the Jacobian matrix is transformed from Cartesian
coordinate space to Joint coordinate space.  Cutting joints will result in two possible cases: (a) a
pair of bodies remain connected by one joint or (b) a pair of bodies are disconnected.  The two
cases will be addressed.  Finally, a numerical example will be used to illustrate the formulation.

The analytical formulation developed in this paper and validated through numerical examples
is ultimately intended for implementation into computer-aided-engineering environments to
increase the automation of mechanical design.  It can also be used to study different scenarios of
a particular design.  The ultimate goal is to extend this work to include the propagation of
dynamics in mechanisms and machines.

2  Cut-Joint Constraint Formulation
Cut-joint methods (Wittenburg 1977 and Haug 1989) are used to handle closed-loop

systems to form a spanning tree that has no closed loops.  Joints that are cut in the topology
analysis process are replaced by a set of constraint equations.  Partial derivatives of basic
constraints with respect to design variables are derived in Cartesian coordinates.  Figure 1
depicts a pair of solid bodies denoted by body i and body j.  The symbols ′′Oij  and ′′Oji  denote

the origins of joint reference frames embedded in bodies i and body j, respectively.  The global
reference frame is xyz, the body reference frame is ′ ′ ′x y z , and the joint reference frame is

′′ ′′ ′′x y z .

Fig. 1  Kinematic notation for vectors

In this section, four types of constraints are considered.  The combination of these basic
constraints can be used to define the kinematic joints between two links.  The formulation in this
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section is aimed at determining partial derivatives of these basic constraints and extending the
work to include the variations of joint position vectors and orientation matrices.

2.1  Dot-1 Constraint.    A condition that a pair of body-fixed nonzero vectors a i  on body i
and a j  on body j are orthogonal is that their scalar product be zero, such that

Φ d
i j i

T
j

1 0( , )a a a a≡ = (1)

where the superscript d1 denotes the scalar product (dot product).  The symbol Φ  is used to
indicate a constraint.  The vector a i  can be written as a A C ai i ij i= ′′ , where the ′′_  symbol

indicates vectors resolved with respect to the joint reference frames,  A is the direction cosine
matrix from the body reference frame ′ ′ ′x y z  to the global reference frame xyz, C is the
transformation matrix from the joint reference frame ′′ ′′ ′′x y z  to the body reference frame

′ ′ ′x y z .  The variation of a i  keeping Cij  as a design variable, can be written as

δ δ δa A C a A C ai i ij i i ij i= ′′+ ′′ (2)

Define a global vector δπ , called the virtual rotation of the transformation matrix A from the
body reference frame ′ ′ ′x y z  to the global reference frame xyz.  Also define δ δ~π = AAT , as a
skew symmetric matrix (Haug 1989), where the tilde operator (~)  on a vector

a = a a ax y z

T
, generates the following skew symmetric matrix.

~a =
−

−
−

�

!
   

"

$
###

0

0

0

a a

a a

a a

z y

z x

y x

(3)

In order to study the variations of body orientations, define the vector δξ ij  as a local vector,

called the virtual rotation of the transformation matrix Cij  from the joint reference frame

′′ ′′ ′′x y z  to the body reference frame ′ ′ ′x y z .  Also define δ~
ξij  as a skew symmetric matrix such

that δ δ~
′ =ξij ij ij

TC C .  Therefore, the variation of A can be written as δ δ δA A A= =′~ ~π π  and the

variation of C can be written as δ δC Cij ij ij= ′
~
ξ  .

Substituting for δA , δCij  and the following property A Aδ δ′ = ′
~ ~
ξ ξij ij  into Eq. (2) yields

δ δ δa A C a A C ai i i ij i i ij ij= ′′+ ′ ′′~ ~
π ξ (4)

Replacing the expression for  a i  into Eq. (4) and using the relationship ~ ~ab ba= −  yields
δ δ δa a ai i i i ij= − − ′~ ~π ξ (5)

The variation of the dot-1 constraint function of Eq. (1) can be written as
d1δΦ = δ i

Ta ja( ) = j
Ta δ ia + i

Ta δ ja (6)
Substituting for δa i  and δa j  into Eq. (6) yields

                     δ δ δ δ δΦ π ξ π ξd
j
T

i i j
T

i ij i
T

j j i
T

j ji
1 = − − ′ − − ′a a a a a a a a~ ~ ~ ~ (7)

2.2   Dot-2 Constraint.   Orthogonality of the body-fixed vector ia  and the vector ijd  can
be written as:
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δΦ d
i ij i

T
ij

2 0( , )a d a d= = (8)

Referring to Fig. 1, the vector dij  between two bodies can be written as

d r s r sij j ji i ij= + − − (9)

where sij  are the joint position vectors that define the basic dimensions of a body.  The

variations of Eq. (9) is
δ ijd = δ jr + δ jis − δ ir − δ ijs (10)

Note that sij , throughout this discussion, is not considered as a constant and therefore its

variation will be kept as a variable.  The vectors  ijs   and jis   can be written as ijs = iA ij
’s  and

jis = jA ji
’s .  The variation of the joint position vectors can be written as

  δ δ δs s A sij ij i i ij= − + ′~ π (11)

Substituting for δsij  and δs ji  into Eq. (10) yields

δ δ δ δ δ δ δd r r s A s s A sij j i ji j j ji ij i i ji= − − + ′ + − ′~ ~π π                     (12)

The differential of the dot-2 constraint function of Eq. (8) can be written as
δ d 2Φ = δ i

Ta ijd( )= ij
Td δ ia + i

Ta δ ijd (13)
Performing the derivation and substituting for δdij  and δa i  yields

δ δ δ δ δΦ π πd
i
T

j i
T

i i
T

ij ij
T

i i i
T

ji j
2 = − + − −a r a r a s d a a s~ ~ ~3 8

a A s a A s d ai
T

j ji i
T

i ij ij
T

i ijδ δ δ′ − ′ − ′~ ξ (14)

2.3   Spherical Constraint.    A spherical joint is a type of constraint that requires a pair of
points on two bodies to coincide.  A necessary and sufficient condition  for ′′Oij  and ′′Oji , to

coincide is that ijd = 0 ; i.e.,

Φ s
ij ji j ji i ijO O( , )′′ ′′ = + − − =r s r s 0 (15)

Taking the variation of Eq. (15) and substituting for δsij  and δs ji yields

δ δ δ δ δ δ δΦ π πs
j i ji j j ji ij i i ji= − − + ′ + − ′r r s A s s A s~ ~  (16)

2.4   Distance Constraint.    A distance constraint requires a specified distance between a
pair of points.  A necessary and sufficient condition that the distance between ′′Oij  and ′′Oji ,

shown in Fig. 1, be equal to l ≠ 0  is that
Φ dis

ij ji ij
T

ijO O( , , )′′ ′′ = − =l ld d 2 0 (17)

The differential of the distance constraint of Eq. (17) is

δ δΦ dis
ij
T

ij= 2d d  = − − + ′ + − ′2d r r s A s s A sij
T

j i ji j j ji ij i i ijδ δ δ δ δ δ~ ~π π (18)

2.5   General Formulation of Basic Constraints.   All constraint equations can be written
in the form

Φ ir , iA , ijs ,Cij , jr , jA ,C ji , jis( )= 0 (19)
The differential of both sides of Eq. (19), noting that s and C are variables, yields

δ δ δ δ δ δ δΦ Φ Φ π Φ Φ π Φ Φπ π= + + + + ′ + ′′ ′r r s sr r s s
i i j j ij jii i j j ij ji

                     Φ ξ Φ ξξ ξij jiij jiδ δ′ + ′ = 0 (20)
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In order to minimize the size of the system to be solved, a relative joint coordinate system is
adopted.  In the following section, the Jacobian matrix in Cartesian coordinate space denoted by

Φ
$z  is transformed into joint coordinate space denoted by Φq  where Φq = ∂ ∂Φi jq  and q is

the vector of relative joint coordinates.  In order to convert a closed loop system to a tree
structure, a joint is cut and an additional constraint is introduced as shown in Figure (1).
The general form of Eq. (20) can be written in a linearized form as

δΦ =
izΦ iδz +

jzΦ jδz + ij

ξΦ δ ijξ + ijsΦ ijδs (21)

where the virtual displacement for bodies i and j are δ δ δz ri = i i

Tπ  and    
δ δ δz rj j j

T
= π .

and the virtual joint position vector is  δ δ δs s sij
ij ji

T
= ′ ′  and the virtual joint orientation vector

is δ δ δξ ξ ξij
ij ji

T
= ′ ′ .  The coefficients of virtual displacement are defined as Φ Φ Φπz ri i i

=

and     Φ Φ Φπz rj j j
= .  The coefficients of linkage length and rotation are defined as

Φ Φ Φ
s s sij

ij ji
= ′ ′   and   Φ Φ Φ

ξ ξ ξij
ij ji

= .   

3  Transformation of Jacobian Matrix from Cartesian Space to Joint Coordinate Space
3.1 Derivation of the Virtual Rotation.    The orthogonal transformation matrix jA  from

the body j reference frame to the global reference frame can be written in terms of the
transformation matrix ′′A ij  from the body j reference frame  ( ′ ′ ′x y zj j j ) to the joint reference

frame of body i ( ′′ ′′ ′′x y zij ij ij ), as jA = iA ijC ij
"A .  The variation of A j  is written as

δ jA = δ iA ijC ij
"A + iA δ ijC ij

"A + iA ijC δ ij
"A (22)

Substituting for δA i , δCij  into Eq. (22) and multiplying by the virtual rotation matrix yields

δ δ δ δ~ ~ ~ ~π π ξ πj j i i ij ij i ij ij ij i ij ij ijA A C A A C A A C A= ′′ + ′ ′′ + ′ ′′ (23)
Using the definition for δ~π , δ ′′A ij  can be written as  δ ij

"A = δ˜ π ij
’

ij
"A .  Substituting for δ ′′A ij

yields iA ijC δ˜ π ij
’ = δ˜ π ij iA ijC  where δ ijπ  can be obtained from the relative coordinate variation

δq j , such that

δ δπ ij j i j j= H A q q( , ) (24)

and H A qj i j( , )  is a transformation matrix that depends on the orientation of body i and on the

relative coordinates δq j , which is defined for each type of joint.    Using the definition of A j ,

Eq. (23) can be written as

           δ~π j jA = δ i˜ π jA + δ
ij

˜ ξ jA + δ˜ π ij jA (25)

Thus, the virtual rotation of body j can be expressed as
δ δ δ δπ π ξ πj i ij ij= + + (26)

Furthermore, substituting Eq. (24) into Eq. (26) yields the virtual rotation
δ δ δ δπ π ξj i ij j j= + + H q (27)

3.2   State Vector Representation.    Referring to Fig. 1, the origin of body j reference
frame can be located by the position vector given by
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jr = ir + ijs + ijd (28)
Taking the variation of Eq. (28) yields

jδr = iδr + ijδs + ijδd  (29)
The vector dij  can be written as d A C d qij i ij ij j= ′′( )  . Taking the variation of dij  and substituting

for δA i  and δCij   yields

 δ δ δ
δ
δ

δd d d
d

q
qij i ij ij ij

ij

j
j= − ′ +~ ~π ξ (30)

Substituting for δdij  and δsij  into Eq. (29) and using the relationship ~ ~ab ba= −  yields

δ δ δ δ δ δ
δ
δ

δr r s A s d d
d

q
qj i i ij i ij i ij ij ij

ij

j
j= + + ′ + − ′ +~ ~ ~π π ξ (31)

Collecting terms and simplifying yields

δ δ δ δ δ
δ
δ

δr r r r A s d
d

q
qj i i j i i ij ij ij

ij

j
j= + − + ′ − ′ +~ ~π ξ3 8  (32)

Adding a common term ( j˜ r jδπ ) to both sides of Eq. (32), and using Eq. (27), Eq. (24), and the

relationship ~ ~ab ba= −  yields

δ δ δ δ δ δ
δ
δ

δ δr r r r A s d
d

q
r H q rj j j i i i i ij ij ij

ij

j
j j j j ij+ = + + ′ − ′ + +

�
��

�
�� + ′~ ~ ~ ~ ~π π ξ ξ  (33)

Equation (48) and the virtual rotation of Eq. (41) can be combined in matrix form as

jδr + j˜ r jδπ
jδπ

 
  

 
  =

iδr + i˜ r iδπ
iδπ

 
  

 
  +

iA
0

 
  

 
  ij

’δs +
ij∂d

j∂q
+ j˜ r jH

jH

 

 

 
 

 

 

 
 jδq + j˜ r − ij

˜ d 
I

 
  

 
  δ ijξ (34)

Equation (34) written in the state-vector notation is
δ δ δ δ δ$ $z z B q M s Nj i j j i ij j ij= + + ′ + ′ξ  (35)

where the state variations of body i  and j  are defined as δ δ δ δ$

~z r ri i i i i

T= + π π    and

δ δ δ δ$

~z r ri j j j j

T
= + π π , where jB  is the velocity transformation matrix written as

B
d

q
r H Hj

ij

j
j j j

T

= +
�
!  

"
$##

∂
∂

~
 and the virtual joint location transformation matrix is iM =

iA
0

 
  

 
  

and the virtual joint orientation transformation matrix between bodies j and  i is

N r d Ij j ij

T
= −~ ~ .  In order to represent the constraint variation in terms of state vector

notation, define iδz = iT iδˆ z  and  jδz = jT jδˆ z   where the virtual displacements are 

δ δ δz ri i i

T= π  and δ δ δz rj j j

T
= π and the transformation matrices iT  and jT  are

defined as iT =
I i−˜ r 
0 I

 
  

 
       

jT =
I j−˜ r 
0 I

 
  

 
  , where I is the identity matrix.  Substituting for δzi

and δz j  into Eq. (21) yields

δΦ =
izΦ iT iδˆ z +

jzΦ jT jδˆ z + ij

ξΦ δ ijξ + ijsΦ ijδs = 0
(36)

The Jacobian of the constraint function can be written in terms of the state vector notation as
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 Φ Φ
$z z T

i i i=  and  Φ Φ
$z z T

j j j=  (37)

Substituting Eqs. (37) into Eq. (36) yields the general expression for a constraint variation in a
state vector representation as

δΦ =
iˆ z Φ iδˆ z +

jˆ z Φ jδˆ z + ij

ξΦ δ ijξ + ijsΦ ijδs = 0  (38)
In order to simplify the computation of the orientation, the virtual rotation δξ ij  is transformed to

the virtual Euler parameters δp  using the following transformation

δ δξ ij i j j= 2A E p (39)

where p j = e
j0
,e

j1
,e

j2
,e

j3[ ]T

 and  E j  is the Euler parameter semi-rotation matrix defined as

E j = −e
j
, ˜ e 

j
+ e

j0
I[ ]=

−e
1

e
0

−e
3

e
2

−e
2

e
3

e
0

−e
1

−e
3

−e
2

e
1

e
0

 

 

 
 
 

 

 

 
 
 

(40)

A normalization constraint given by
Φ j = p j

Tp j − 1 = e
0

2 + e
1

2 + e
2

2 + e
3

2 −1 = 0 (41)
is imposed to restrict the four Euler parameters and to express the three relative degrees of
freedom.  In addition, the transformation matrix Cij  can be represented as  Cij = E jG j

T

where G j  is the Euler parameter semi-rotation matrix defined by

G j = −e
j
,−˜ e 

j
+ e

j0
I[ ]=

−e
1

e
0

e
3

−e
2

−e
2

−e
3

e
0

e
1

−e
3

e
2

−e
1

e
0

 

 

 
 
 

 

 

 
 
 

(42)

4   Evaluating the Jacobian for a Cut constraint
After cutting joints, the pair of bodies may become disconnected or remain connected by one

joint.  Therefore, two cases must be considered in evaluating the Jacobian matrix for a cut
constraint.

4.1 Case 1: A Pair of Bodies Remains Connected by One Joint, after Cutting
Additional Joints Between the Pair.     Assume bodies i and j are connected by two kinematic
joints.  Choosing joint 1 to be cut, body i is the inboard body of body j (Fig. 2a).

i-1

i j
j-1

m
p

n

Base Body

p

n

Base Body
(a) (b)

cut joint

cut joint

Fig. 2   After cutting a joint (a) a pair remains connected, (b) a pair is disconnected
 In this case, the state variation of body j  can be represented in terms of the state variation of
body i by Eq. (35).  Substituting Eq. (35) into Eq. (38) and recognizing that iˆ z Φ +

jˆ z Φ = 0

yields
δ δ δ δ δ δΦ = Φ Φ Φ ξ Φ Φ ξ

ξ$ $ $z z z s
B q M s N s

j j j
ij ijj j i ij j ij

ij ij+ ′ + ′ + +  (43)



8

4.2   A Pair of Bodies is Disconnected after Cutting Joints.    Assume that the joint
connecting bodies i  and j  is cut and that body p  is the junction node of the two chains that
contain bodies i  and j , respectively (Fig. 2b).    In this case, the state variation of body j
cannot be represented in terms of the state variation of body i since no relative coordinates exist
between bodies i  and j.  Therefore, the state variations of bodies i  and j  must be written in
terms of the state variation of their common junction node p  such that

δ δ δ δ δ$ $ , ,z z B q M s Ni i i i i i i i i i= + + ′ + ′− − − −1 1 1 1ξ  (44)

Equation (44) can be recursively used to obtain the state variation of body i in terms of the
state variation of its junction p and those of the of relative coordinates along the chain as
δ δ δ δ δ δ δ δ$ $ , , , ,z z B q M s N B q M s Ni i i i i i i i i i i i i i i i i i= + + ′ + ′ + + ′ + ′− − − − − − − − − − − − −2 1 1 2 2 1 1 2 1 1 2 1 1ξ ξ (45)

Simplifying and writing in terms of a summation yields

δ δ δ δ δ$ $ , ,z z B q M s Ni p k k k k k k k k
k m

i

= + + ′ + ′− − −
=
∑ 1 1 1ξ2 7  (46)

Substituting for δ$zi  and δ$z j  into Eq. (61) yields

δ δ δ δ δΦ = Φ ξ − ,$ ,$z z B q M s N
i p k k k k k k k k

k m

i

+ + ′ + ′
�
! 

"
$#− −

=
∑ 1 1 12 7

      +Φ ξ Φ Φ ξ− , ξ$ ,$z s
z B q M s N s

j
ij ijp k k k k k k k k

k n

j
ij ijδ δ δ δ δ δ+ + ′ + ′

�
! 

"
$# + +− −

=
∑ 1 1 12 7 (47)

Collecting similar terms and rearranging yields

δ δ δ δ δΦ = Φ Φ + Φ ξ − ,$ $ $ ,$z z zz B q M s N
i j ip k k k k k k k k

k m

i

+ + ′ + ′− −
=
∑4 9 2 71 1 1

       + + ′ + ′ + +− −
=

∑Φ ξ Φ Φ ξ− , ξ$ ,z s
B q M s N s

j
ij ijk k k k k k k k

k n

j
ij ijδ δ δ δ δ1 1 12 7 (48)

where Φ Φ
$ $z z 0

i i
+ = .  The constraint variation, written in terms of the Jacobian is 

δ δΦ = Φq q (49)

where  Φq =  iˆ z Φ mB ...
iˆ z Φ iB |

iˆ z Φ m −1M ...
iˆ z Φ i− 1M[ |

iˆ z Φ mN ...
iˆ z Φ iN |

jˆ z Φ nB ...

jˆ z Φ jB |
jˆ z Φ n −1M ...

jˆ z Φ j − 1M |
jˆ z Φ nN ...

jˆ z Φ jN | ijsΦ | ij

ξΦ ] (50)

and  δ δ δ δ δ δ δ δ δq q q s s q q= ′ ′ ′ ′− − − −m i m m i i m m i i n j... | ... | ... | ... |, , , ,1 1 1 1ξ ξ

         δ δ δ δ δ δ′ ′ ′ ′− − − −s s sn n j j n n j j
ij ij T

1 1 1 1, , , ,... | ... | |ξ ξ ξ (51)

The numerical algorithm used to compute an assembled configuration due to a design
propagation is depicted in Fig. 3.
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Fig. 3  Algorithm for computing kinematic design propagations

In order to validate the foregoing analysis and to demonstrate the numerical solutions, a
spatial mechanism is analyzed using the presented formulation.  Section 5 will illustrate the
formulation using the analysis of a the McPherson strut suspension system.

5    Numerical Example
The McPherson strut suspension, shown in Fig. 4a, has been simplified as a two-body system

comprising a chassis and a wheel assembly with three joints.  Since the mass of the lower control
arm, strut, rack and tie rod are insignificant compared with the chassis or the wheel assembly,
they are usually modeled as composite joints.  The model comprises a composite Revolute-
Spherical (R-S) joint, a composite Spherical-Translational (S-T) joint, and a composite
Translational-Distance (T-D) joint connecting the chassis and the wheel assembly.

Chassis 

Wheel 
Assembly

1

2

S-T

cut cut

(b)

spherical joint

Rack

Tie Rod

Wheel Assembly

Strut Joint

Piston Rod

Lower Control
 Arm

S D

Spherical Joint

R T

Chassis

dij

R-Shij

Oji’’

Oij’’

(a) (c)

Fig. 4  (a)  McPherson strut suspension system (definition of reference frames)
(b)  Graph representation of the system and (c) Revolute-sppherical joint

The McPherson strut suspension system has two degrees of freedom with respect to the
chassis, i.e., jounce and steering.  To form a spanning tree structure, the composite R-S and the
composite T-D joints are cut.  The system belongs to case 1 and the graph representation is
shown in Fig. 4b.

The R-S joint, shown in Fig. 4c, connects the chassis by a revolute joint and the wheel
assembly by a spherical joint.  It has four relative degrees-of-freedom, one for the revolute and
three for the spherical joint.  Thus, it has two constraint equations.

where partial derivatives of the variation of the basic constraints (Eq. 7, 14, 16, and 18), written
in terms of their coefficients, are presented in Table 1.
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Table 1   Partial Derivatives of Basic Constraint Functions
Constraint
Function

Φri
Φr j

Φπ i
Φπ j

Φ ′sij
Φ ′s ji

Φξ′ij
Φξ′ji

Dot-1
Φ d

i j
1( , )a a

0 0 − a j
T ˜ a i − ai

T˜ a j 0 0 − a j
T ˜ a i − ai

T˜ a j

Dot-2
Φ d

i ij
2 ( , )a d

− ai
T a i

T
( ~ ~ )a s d ai

T
ij ij

T
i− − ai

T˜ s ji − ai
T

iA a i
T

jA − ij
Td ˜ a i 0

Spherical
Φ s

ij jiO O( , )′′ ′′
− I I ij˜ s − ˜ s ji i−A jA 0 0

Distance
Φ dis

ij jiO O( , ,′′ ′′ l
−2 ij

Td 2 ij
Td 2 ij

Td ij˜ s − 2 ij
Td ˜ s ji − 2 ij

Td iA 2 ij
Td jA 0 0

V.   SPATIAL SLIDER-CRANK MECHANISM
Consider the spatial slider crank mechanism shown in Fig. 4, having a revolute joint, a

universal joint, and a translational joint.

0

1

2

3

Cut joint

(b)

Connecting 
rod

Crank

Ground

Slider

Ground

Connecting 
rod

Slider

Crank

(a)

Universal
joint

Spherical joint

Sliding
joint

Fig. 4   Spatial slider-crank mechanism

This system has four relative generalized coordinates q = q q q q1 2 3 4

T
, q1  for the

revolute joint, q2  and q3  for the universal joint, and q4  for the translation joint.  To form a
spanning tree, the spherical joint is cut, as illustrated in Fig. 4b.   The system has three scalar
constraint equations.

Φ sph = + − − =r s s r 0
2 21 12 1

(5.1)
The tree graph represents a pair of links that are disconnected after cutting a joint (case 1).  For
a given initial estimate that does not satisfy the constraint function Φ , the set of linear
equations written as

Φ Φq q q q( ) ( )( ) ( ) ( )k k kδ = − (5.2)
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are solved simultaneously for a correction δq k( ) .  The corrected term is added to the estimate

q k( )  to obtain an improved estimate such that

q q q( ) ( ) ( )k k k+ = +1 δ (5.3)
In this example, the linear equations are written as

Φ Φq qsph sphδ = (5.4)

where Φq
sph

 is the Jacobian matrix in joint coordinate space.  The Jacobian matrix Φ
$z
sph  in

cartesian space can be transformed to joint space using velocity transformations as

Φ Φ Φ Φq z z zB B Bsph sph
rev

sph
trans

sph
uni=

$ $ $

| | (5.5)
where B rev is the transformation matrix for the revolute joint

B rev =
˜ r 

1
h

01

h
01

 

 
 

 

 
 (5.6)

h A C01 0 01 0 0 1= T
(5.7)

 and Buni  is for the universal joint

Buni =
˜ r 

2
h

32
˜ r 

2
g

32

h
32

g
32

 

 
 

 

 
 (5.8)

h A C32 3 32 0 0 1= T
(5.9)

g A C A32 3 32 321 2 0 0 1= ′′ ( )q T
(5.10)

where the rotation matrix is

A 321
" q2( )=

cos q2( ) −sin q2( ) 0

sin q2( ) cos q2( ) 0

0 0 1

 

 

 
 
 

 

 

 
 
 (5.11)

For the translational joint, the velocity transformation matrix is Btrans  defined as

Btrans =
g

03

0
 
  

 
  (5.12)

g A C01 0 03 0 0 1= T
(5.13)

where
Φ

$

~ ~
z I r s

i

sph = − +1 12 (5.14)

Φ
$

~ ~
z I r s

j

sph = − − +2 211 6 (5.15)

The initial estimates of the position and orientations of the ground are presented in Table 2.
TABLE 2

Position and Orientation Estimates of the Ground
body x              y              z               e1               e2                 e3

ground 0              0              0               0                0                  0
Initial estimates of joint attachment vectors in the body reference frame are presented in Table 3.

TABLE 3
Joint Attachment vectors in Body Reference Frame Estimates

s’           x’               y’                  z’ s’           x’               y’                  z’
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01
’s           0                0                    0
12
’s           2                0                    0
21
’s           -2.828       0                     0

03
’s           0                3.8637          0
32
’s           0                0                    0

Transformation Matrices from Joint Coordinates to the Body Reference Frame are as follows.

C01 =
0 0 1

1 0 0

0 1 0

 

 

 
 
 

 

 

 
 
                  

C03 =
0 1 0

0 0 1

1 0 0

 

 

 
 
 

 

 

 
 
                  

C32 =
0 1 0

0 0 1

1 0 0

 

 

 
 
 

 

 

 
 
 

Estimates of generalized coordinates are q = −45 30 0 0o o o o T
.

For a given initial estimate, the Newton-Raphson iteration method is used until the constraint
violations are satisfied.  A linkage length or a transformation matrix from joint coordinate to
body reference frame may be changed.  Therefore, joint attachment vectors may be changed
(e.g., 01

’s , the revolute joint attachment vector in ground reference frame.)  Once the linkage

length has been changed, the constraint function is violated, and three options can be performed:
(1) The generalized coordinates q are changed such that

Φˆ z 1

sphBrevδq1 + Φˆ z 2

sphB transδq4 + Φˆ z 2

sphBuni

δq2

δq3

 
  

 
  = −Φ (5.16)

(2) The linkage lengths ′s  are changed such that
Φˆ z 1

sphM0δs
01

' + Φˆ z 2

sphM0δs
03

' + Φˆ z 2

sphM3δs
32

' + Φs12
’ δs

12

' + Φs21
’ δs

21

' = −Φ (5.17)

where M0 =
A 0

0
 
  

 
               M3 =

A 3

0
 
  

 
  (5.18)

Φs 12
’  and Φs 21

’  are spherical constraint given in Table 1.
(3) The generalized coordinates q and linkage lengths s’  are changed such that

Φˆ z 1

sphBrevδq1 + Φˆ z 1

sphM0δs
01

' + Φˆ z 2

sphB transδq4 + Φˆ z 2

sphBuni

δq2

δq3

 
  

 
  + Φˆ z 2

sphM0δs
03

'

            + Φˆ z 2

sphM3δs
32

' + Φs 12
’ δs

12

' + Φs21
’ δs

21

' = −Φ (5.19)

Initial estimates are provided for an assembled configuration.  The simulation results due to
changing the spherical joint attachment vector in crank reference frame 21

’s

from −2 828 0 1.
T

to −2 8 0 2 01. . .
T

are presented in Table 4.  Results of propagating the

change in this design are illustrated in Fig. 5.
TABLE 4

Simulation results due to a change in 21
’s

variables q ij
’s q  and ij

’s
01
’s [0 0 0]T [0.025  0.0311538

0.0397479]T
[0.008368 0.0111318

0.0122555]T

03
’s [0 3.8637 0]T [-0.025  3.83255  -

0.0397479]T
[-0.008368 3.85257 -

0.0111318]T

32
’s [0 0 0]T [-0.0397479 -0.025  -

0.0311538]T
[-0.012255 -0.008368 -

0.0111318]T
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12
’s [2 0 0]T [2.05014  0.00607691

0.025]T
[2.01654 0.000794346

0.008368]T

21
’s [-2.8 0.2 0.1]T [-2.8 0.2 0.1]T [-2.8 0.2 0.1]T

1
q 44.893707 45 45.090633
2

q , 3
q -26.0852, -

2.0454
-30, 0 -27.367386, -1.3609008

4
q -0.0184005 0 -0.0111318

Φ 1.26576e-05 1.11076e-16 1.1
321e-06

Iterations 2 1 2

s21
s12

Fig. 5  Changes in the mechanism due to a design propagation
It is required that the vector ijd ≠ 0  between joint definition points ′′Oij  and ′′Oji , be

orthogonal to the axis of rotation of the revolute joint hij (a unit vector along the axis of rotation

of the revolute joint).  It is also required that the distance between the origins ′′Oij  and ′′Oji

(lower control arm length 
R S−l  ) be equal to R S−

≠l 0 .  The two additional constraints are

Φ d
ij ij

2 0( , )h d =  and Φ dis
ij ij R SO O l( , , )′′ ′′ =− 0 .  The two constraints are combined into one set as

Φ Φ
Φ

R S
d

dis

ij
T

ij

ij
T

ij R Sl
−

−

= =
−

=
�
! 

"
$#

�
!  

"
$##

2

2

h

d

d
d

0 (52)

where hij  can be written as h h A Cij R S R S

T= =− −12 1 12 0 0 1  and the distance dij  can be

written as d d r s r sij R S R S R S= = + − +− − −12 2 21 1 12  where the subscript 21R-S denotes the R-S joint

between body chassis and wheel assembly.  The Jacobian matrix of the constraint function of Eq.

(52) in Cartesian space can be written as Φ Φ Φ
$ $ $z z zj j j

R S d dis
T

− = 2 , where

Φ
$

~ ~
z h h r s

j

d
ij
T

ij
T

j ji
2 = − +3 8  and

Φ
$

~ ~
z d I r s

j

dis
ij
T

j ji= − +2 3 8 , where r r r s dj S T S T= = + +− −2 1 12 12 .
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 and the vector d12S T−   can be written as d g12 2S T ijq− =  and g A C Aij S T sph

T= ′′−1 12 0 0 1 ,

where Asph
"

 is the transformation matrix of the spherical joint reference frame between wheel
assembly and chassis.  Since the T-D joint, connects the chassis by a translational joint and the
wheel assembly by a distance joint, it introduces an additional relative degree-of-freedom which
is the relative translational coordinate 3q .  A new vector lij  is introduced (as shown in Fig. 5)

such that l d hij ij ijq= − 3 .  The constraint equation that characterizes this joint is

ΦT D
ij
T

ij T Dl−
−= − =l l 2 0 (53)

where d d r sij T D l T D= − −− −12 12   and h A C12 12 0 0 1T D l T D

T

− −= .

z"ijh

o

ir
jr

ijs

jis

i
’o

j
’o

ijd

ijl
T D

T:translational joint

D:distance joint

o ji
"

o ij
"

Fig. 5   Translational-distance joint
Taking the variation of Eq. (53) yields

δ δ δ δ δ δ δΦ π πT D
ij
T

j j ji ji j i i ij ij ij iq− = −+ ′ − − ′ + +2 3l r A s s r A s s h~ ~ ~3 8
                     + − − − −

~
h hij ij ij T D T Dq q l l3 3 2δ δ δξ (54)

The Jacobian matrix of the T-D constraint in Cartesian space is

Φ Φ Φ
$

~
z r

I r

0 Ij j j

T D j− =
−�

! 
"
$#π (55)

and can be written as

           Φ
$

~ ~
z l l s r

j

T D
ij
T

ij
T

ji j
− = − +2 2 3 8 (56)

For the T-D joint, the Jacobian matrix is
Φq

T D
ij
T

ij3
2− = − l h (57)

The uncut S-T joint connects the chassis with a spherical joint and the wheel assembly with

a translational joint.  It has four relative degrees of freedom q qS T

T
q− = 1 2 , three for the

spherical joint and one for the translational joint.  Three relative rotational coordinates of the
spherical joint can be expressed using Euler parameters to avoid orientation-associated

singularities.  The Euler parameters are denoted by e0
,e

1
,e

2
, e

3
 such that p1 = e e e e0 1 2 3

T

and the normalization Φ j
T= − = + + + − =p p1 1 0

2
1
2

2
2

3
21 1 0e e e e  is imposed (Eq. 41).

Since a translational joint does not have a rotational degree of freedom, the transformation
matrix ij

"A  of the S-T joint is simply the same as that of a spherical joint, thus ′′ = ′′ =A A E Gij sph j j
T .

The velocity transformation matrix B j  can be expressed as
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B B Bj
S T

sph tran
− = (58)

where B r I A C Esph

T

S T j= −
~

2 1 12 2  is the velocity transformation for the spherical joint, and

B g 0tran ij

T
=  is the velocity transformation vector for the translational joint, where

g A C Aij S T sph

T= ′′−1 12 0 0 1  and the transformation matrix A2  can be written as A A C A2 1 12= ′′−S T sph .

When a given initial estimate does not satisfy the constraint equations Φ , the set of linear
equations Φqδq = −Φ  are solved simultaneously.  The variables q  are updated until the
constraints are satisfied.  In this example, the linear equations are written as

Φ
Φ Φ

Φ
Φ

q

q

0 q
S T

S T

R S

T D
q
T D

S T
R S

T Dq
−

−

−

− −
−

−

−

�
!  

"
$##
�
! 

"
$# =

−
−

�
! 

"
$#3 3

δ
δ

(59)

where the ( )2 5×  Jacobian matrix ΦqS T

R S

−

−  and the ( )1 5×  vector ΦqS T

T D

−

− , in joint coordinate space,

are transformed from the Cartesian space Φ
$z j

 (where Φ
$z j

R S−  has dimension 2 6×  and Φ
$z j

T D−  has

dimension 1 6× ) by using the velocity transformation matrix B, such that Φ Φq z B
S T j

R S R S
j
S T

−

− − −=
$

and Φ Φq z B
S T j

T D T D
j
S T

−

− − −=
$

.   Initial estimates of the position of the chassis is given as

x y z
T= 0 0 0 0 055. . .  and the orientation in terms of Euler parameters as

e e e
T

1 2 3 0 0 0 0 0 0= . . . .

Initial estimates of the joint position vectors in body reference frame are entered into column 2
of Table 2.  Estimates of transformation matrices Cij  from Joint definition frames to body
reference frames are computed as

C
12R−S

=
0.000256112 −0.99961 −0.0261336

0.00979628 0.0261336 −0.99961

0.999904 0 0.0098001

 

 

 
 
 

 

 

 
 
 

 C C C
21R S 21− − −= = =

−�

!

 
 
 

"

$

#
#
#

12

0 1 0

1 0 0

0 0 1
S T T D

 

and C
12T− D

=
0 0 1

1 0 0

0 1 0

 

 

 
 
 

 

 

 
 
 

and the corresponding Euler parameters Pij  are computed as P
12R−S

= 0.508967 0.491 −0.50398 0.495811[ ]T

P
21R−S

= 0.707107 0 0 0.707107[ ]T

, P
12S−T

= P
21T −D

= 0.707107 0 0 0.707107[ ]T , and P
12T−D

= 0.5 0.5 0.5 0.5[ ]T

and estimates of the generalized coordinates are  q1 1 2 0 0 1 2= −
T , q2 0 425= − . , and

q3 0 305= . .  The initial estimates do not satisfy the constraint equations Φ .  The Newton-
Raphson iteration method is used to update the generalized coordinates q.  The algorithm
converges within 2 iterations within a tolerance of 10 5−  and the set of new generalized

coordinates are computed as:  p1 0 6979 0 0320 0 0529 0 7137= − − −. . . .
T

, q2 0 4337= − . ,

and q3 0 2760= − . .  Once the configuration changes, the constraint equations are violated.  There
are five possible methods to compensate the constraint violations.  Those methods are:

(1) Change the generalized coordinates q p= 1 2 3
T q q  by iteratively solving

Φ Φ Φ
$z B q

2 32 3
S T

S T q q−
− + = −δ δ (60)

For a change in design parameters of the S-T joint position vector s12S T−  from

0 5011 11162 01998. . .
T

 to 0 5 10 0. .
T

, only allowing the generalized joint variable to

change using Eq. (60) while keeping invariant joint position vectors, the Newton-Raphson
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iteration method is used to compute an assembled configuration which is entered into column 3
of Table 1.

A designer, however, may opt to have constant generalized coordinates but allow the
automatic computation of new joint position vectors, hence, changing the dimensions of links.
Therefore, the second method can be used.
(2) Change the joint position vectors ′sij  by iteratively solving

Φ Φ Φ Φ Φ Φ
$z s s s sM s s s s s

2 12 21 12 211 12 12 21 12 21δ δ δ δ δ′ + ′ + ′ + ′ + ′ = −− ′ − ′ − ′ − ′ −− − − −S T R S R S T D T DR S R S T D T D
(61)

Simulation results due to changing s12S T−  using Eq. (61) are entered into column 4 of Table 1.
A schematic illustrating these two methods is shown in Fig. 6.  Method 1 has resulted in
changing only the generalized coordinates without changing the joint position vectors.  Method
2, illustrated in Fig. 6b, has changed the joint position vectors and therefore, has changed the
structural configuration.

Fig. 6     (a) The mechanism after allowing a change in the generalized variables
and

(b) the mechanism after a change in the joint position vectors

Simulation results due to allowing changes in both the joint position vectors and the
generalized variables can be computed using the following method.
(3) Change the joint position vectors ij

’ s  and generalized coordinates q by iteratively solving

Φ Φ Φ Φ Φ
$ $z z s sB M s s sq

2 3 2 21 212 3 1 12 21 21
S T

S T q S T R S R Sq
R S R S

−
− − ′ − ′ −+ + ′ + ′ + ′

− −
δ δ δ δ δ

+ ′ + ′ = −′ − ′ −− −
Φ Φ Φs ss s

12 2112 21T D T DT D T Dδ δ (62)

simulation results using Eq. (62) are presented in column 6 of table 1.
(4) Change the joint position vectors ′sij , lower control arm length lR S−  and tie rod length

lT D−  by iteratively solving

Φ Φ Φ Φ Φ Φ Φ
$z s s s sM s s s s s

2 12 21 12 211 12 12 21 12 21δ δ δ δ δ δ′ + ′ + ′ + ′ + ′ + = −− ′ − ′ − ′ − ′ −− − − −S T R S R S T D T D lR S R S T D T D
l (63)

Simulation results using Eq. (63) are entered in column 5 of table 1.
(5) Change the joint position vectors ′sij , generalized coordinates q, lower control arm

length l 
R − S 

 , and tie rod length l 
T − D 

  by iteratively solving



17

Φ Φ Φ Φ Φ
$ $z z s sB M s s sq

2 3 2 21 212 3 1 12 21 21
S T

S T q S T R S R Sq
R S R S

−
− − ′ − ′ −+ + ′ + ′ + ′

− −
δ δ δ δ δ

+ ′ + ′ + = −′ − ′ −− −
Φ Φ Φ Φs ss s

12 2112 21T D T DT D T D l lδ δ δ (64)

Simulation results for computing an assembled configuration using Eq. (64) are presented in
column 7 of Table 1.  It is noted that only a few number of iterations is required to converge to
an assembled mechanism.

Table 1   Simulation results due to a change in ′ −s12S T

1
variables

2 after
initial

 assembly

3
q

4
sij

’
5

sij
’

, lR −S , lT −D

6
sij

’

,q
sij

’

,q
l

R −S , lT −D

q1
0.6980

−0.0320

−0.0529

−0.7137

 

 
 
 

 

 
 
 

0.6870

0..0784

−0.0912

−0.7166

 

 
 
 

 

 
 
 

0.6995

0..0199

−0.0666

−0.7112

 

 
 
 

 

 
 
 

0.6993

0..0166

−0.0686

−0.7114

 

 
 
 

 

 
 
 

q2
-0.4337 -0.3638 -0.4061 -0.4106

q3
0.2760 0.2349 0.2799 0.2806

12S −T
’s 0.5011

1.1162

0.1998

 
  

 
  

0.5

1.0
0

 
  

 
  

0.5

1.0
0

 
  

 
  

0.5

1.0
0

 
  

 
  

0.5

1.0
0

 
  

 
  

0.5

1.0
0

 
  

 
  

12R−S
’s 0.33

1.1735

−0.3923

 
  

 
  

0.3647

1 .1148

−0.4365

 
  

 
  

0.3551

1.1152

−0.4246

 
  

 
  

0.3485

1.1419

−0.4162

 
  

 
  

0.3449

1.1421

−0.4116

 
  

 
  

21R−S
’s −0.0507

0.0321

−0.2044

 
  

 
  

−0.0813

0.0914

−0.1580

 
  

 
  

−0.0731

0.0909

−0.1709

 
  

 
  

−0.0674

0.0649

−0.1797

 
  

 
  

−0.0642

0.0644

−0.1846

 
  

 
  

21T− D
’s 0

1.2675

−0.3748

 
  

 
  

0.0298

1.2597

−0.3931

 
  

 
  

0.0210

1.2620

−0.3876

 
  

 
  

0.0039

1.2663

−0.3772

 
  

 
  

0.0046

1.2663

−0.3776

 
  

 
  

21T− D
’s 0.07

0.155

−0.186

 
  

 
  

0.0424

0.1627

−0.1645

 
  

 
  

0.0506

0.1604

−0.1709

 
  

 
  

0.0665

0.1561

−0.1831

 
  

 
  

0.0658

0.1562

−0.1827

 
  

 
  

l
R −S

0.203 0.2326 0.2208

l
T −D

0.3742 0.3955 0.3787

P
12S−T

0.7071

0

0

0.7071

 

 
 
 

 

 
 
 

P
12R−S

0.5090

0.491

−0.5040

0.4958

 

 
 
 

 

 
 
 

P
12T−D

0.5

0.5

0.5

0.5

 

 
 
 

 

 
 
 

Φ norm 0.000672544 0.00015806 0.000348392 0.000564039 1.85401e-05 0.000647021

Iterations 2 3 3 2 3 2

6  Conclusions
An analytical formulation for studying kinematic design propagations for planar and spatial

mechanisms is presented.  The formulation presented in this paper and illustrated by a numerical
example demonstrates the validity of a general purpose formulation and experimental computer
code for the computation of an assembled mechanism due to a change in design parameters.
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A mechanism was shown to be modeled using graph theory and closed loops were converted
into a tree structure using a cut-joint constraint formulation.  It was shown that this formulation
can be derived with respect to design parameters to obtain kinematic design propagations.  Basic
constraints were derived allowing for the variation of joint position vectors and orientation
matrices written in terms of Euler parameters.  A designer may use this experimental code to
study different scenarios or test a new design.

It was shown that the Jacobian matrix in Cartesian space can be transformed to Joint
coordinate space.  The use of relative generalized coordinates in a recursive formulation has
simplified obtaining the differential variations.  It was shown that starting from an initial
configuration that satisfies the independent constraints, an iterative technique can be used to
compute the resulting variations.  The method has showed to be applicable for a variety of
design parameters.

The ultimate goal of this research is to obtain an analogous formulation for the variational
characteristics of dynamics parameters during a design cycle.  It will be advantageous to a
designer, a kinematician, or a dynamicist to obtain relative velocities, accelerations and forces
due to a change in the design.
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