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Abstract

This paper deals with some robustness aspects of a model based controller used for
trajectory tracking in multi-link flexible manipulators. It is known in literature that
the finite element formulation over-estimates the natural frequencies of the original
system. We show that over-estimation of natural frequencies may lead to unstable
closed-loop response for flexible manipulators using a model based inversion control
algorithm. A robust controller design based on the second method of Lyapunov using
simple quantitative bounds on the model uncertainties is illustrated for use during
the trajectory tracking phase in multi-link flexible manipulator control. In order to
actively suppress the link vibrations excited during the trajectory tracking phase, a
second controller based on end-point sensing and the rigid Jacobian of the manipula-
tor is used. The performance of the two-stage controller is illustrated with the help of
numerical simulations of a flexible elbow manipulator.
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1 Introduction

A manipulator with flexible links typically respond to motion of the joints with undesirable
vibration. To suppress the link vibration, the solutions suggested in the literature range
from passive damping methods [1] to active damping methods. In this paper, we deal with
the problem of active damping of flexural vibrations of the links by only the joint control
inputs. The types of controllers proposed in the literature to actively control the flexural
vibrations of the links are typically based on a truncated finite dimensional model [2, 3] of
the system, and in this paper, we use a truncated, finite element model of the multi-link
flexible robot.

Motion control of a flexible manipulator involves tracking the desired trajectory of the
end-effector including active suppression of link vibrations. This can be achieved by model
based control techniques (see [4]) for the trajectory tracking phase, followed by a second
stage control (see [5, 6]) at the final target position to damp out the link vibrations. Most
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of the above mentioned tracking control algorithms require exact knowledge of system
parameters, and the stability of the closed-loop system critically depends on how well
the actual flexible manipulator dynamics is modeled. In real applications, however, the
inertial and elastic characteristics of a flexible manipulator are not known precisely. To this
end, solutions suggested in the literature involve use of adaptive methods [7], the robust
controllers [8], the variable structure controllers [9] and, more recently, H, optimal control
[10].

In this paper, we discuss the robustness and stability issues in a model based trajectory
tracking controller which uses a finite element model of the flexible links. It is known in the
literature that use of finite element discretization method for approximating the continuum
of flexible links, normally over-estimate the natural frequencies of the original system. We
analytically show that over-estimation of natural frequencies in a model based inversion
control algorithm may lead to unstable closed-loop response in a flexible manipulator
system. A robust controller design based on the second method of Lyapunov, using simple
quantitative bounds on the model uncertainties, is illustrated for use during the trajectory
tracking phase. To damp out the induced flexible vibration at the target point, a second
controller based on end point sensing and the rigid Jacobian is used. The results are
illustrated by numerical simulation of a flexible spatial elbow manipulator.

2 A Two-Stage Controller for Flexible Manipulators

The control algorithm consist of a model-based joint controller for the trajectory tracking
phase and an impedance controller for suppression of unwanted flexural vibrations at the
target point. It is similar in concept to the two-stage controllers described in [5, 6]. In
this section, we briefly describe the two stages and define the symbols used.

2.1 Model-Based Joint Inversion Control Law

The open-loop equations of motion for the flexible link manipulator system can be written
as [11],

M, &, + M} d; + he(q,q) + e(q) = T (1)
M,;q, + Mjrqy + hy(q,q) + cf(q) + Kqy = 0 (2)

where q, is the n-vector of generalized joint variables, q; is the N-vector of flexible defor-

M,, M
mation variables, M = " rf | is the (n+ N) x (n+ N) configuration dependent
M,y Myy

generalized mass matrix, h = (h,(q, q)T, hy(q, q)T) is the (n+ N)-vector of Coriolis, and
centrifugal terms and the terms accounting for the interaction of joint variables and their

T
rates with flexible variables and their rates, ¢ = (c,(q)”,cf(q)”)" is the (n + N)-vector
of gravitational terms, K is the N x N flexural structure stiffness matrix of the system, I’



is the n-vector of input torques (or forces) applied at the joints, and 0 is the zero vector
with appropriate dimension.
The model-based control law can be written as

T = (My, — MMM, ;)u + (b, +c¢, — MM, (h; +c; + Kqy)) (3)

where u in terms of the specified joint trajectory, q?(t), and its derivatives, can be written
as

u = _qu'r - Gv('lr + qg(t) + qug(t) + qug(t) (4)
where G, and G, are constant diagonal position and velocity gain matrices for the joint
variables, respectively. By using the positive definiteness of the matrices My and K,
one can show that the closed-loop system is critically stable, and if material damping
is incorporated in the model, it is asymptotically stable[12]. To actively damp out the
unwanted flexural vibrations, we use a second control law at the target point.

2.2 TImpedance Control Using End-Point Sensing

If z, = f(qr,qy) is used to denote the direct kinematics of a flexible manipulator, the
rigid Jacobian of the flexible manipulator, Jg , based on the assumption of small flexible

oqr
exists as it is the conventional Jacobian for rigid link manipulators, and is square for
non-redundant robots.
A controller using the above defined rigid Jacobian, for estimating end point dis-
placement, can be written for the multi-link flexible manipulator system with gravity
compensation as,

displacement, is given by Jy (qd) = (i) It may be noted that Jg always
ar=aqf,q;=

Ty =38 (~Gyoz, — Gozn) + cr(af qf) (5)

where 0z, 2 Zy, — z;il; Z,, Zp are the measured end- effector generalized displacement and
velocity vectors respectively, and maftrices Gp, and G are constant diagonal matrices of
position and velocity gains respectively. The variable qT corresponds to the final point
of the desired joint trajectory and q‘} is q‘} = K¢ f(qf,q‘}), and corresponds to the
static deflection of links under gravity at the desired joint configuration qf. The control
scheme given in equation (5) can be shown to asymptotically stabilize the equilibrium
state ¢ = q%, q = 0 of the flexible link manipulator system(1-2) with non-zero initial
vibrations and for a structural assumption, A, (K) > ¢ (see [13]), where c is related to
the gravity term. It may be noted that c; is linear in q‘]ic from the assumption of small
flexible displacement.

2.3 The Two-Stage Control Algorithm
The two control laws can be described in a compact manner as

= (I—S)F1+SF11 (6)



where,

S 0 null matrix during joint trajectory tracking stage
~ | I identity matrix to suppress link oscillations at the end point of joint trajectory

and, T';, T';; are given in equations (3), (5) respectively. We discuss some robustness issues
of this controller in the next section.

3 Robustness Issues

Practical implementation of the joint inversion control law (equation(3)) requires that the
parameters in the dynamic model of the system be known precisely and also that the
model-based decoupling matrix and the nonlinear feedback terms be computable in real-
time. The above requirements are in general not possible to satisfy and so it is much more
reasonable instead to suppose that the model-based joint inversion control law is actually
of the form

Iy =M — MZfM;;MTf) u+(h, +¢ — szM;} (hy + ¢ +Kqy)) (7)

where ( - ) represent the computed versions of respective expressions in equation(3). The
parameter uncertainty or modeling error is represented by,

AM = (M, — M?fM;;Mrf) — (M, — MffM;;Mrf)
An = (b, +c, — MM, (hf +c; +Kay)) — (b + ¢, — MM (hy +¢; + Kay))

With the nonlinear control law(7), and choosing u as in equation(4), the closed-loop system
of equations become,

&(t) + Goe(t) + Gpe(t) = T(2) 8)
M;sds +hy(q,q) +cr(q) +Kqy = —Mp(u+ ¥(t)) (9)

_ -1
where ¥(t) = ( M, — MTTfo}MTf ) ( AMu+ An ), and e(t) = q,(t) — q¥(t).

In a flexible manipulator system, the uncertainty in the model parameters can be due
to uncertainty in flexural structure stiffness of the manipulator model (i.e. in K matrix),
and uncertainty in mass parameters of the manipulator model (i.e. in M(q) matrix). The
uncertainty in stiffness and mass matrices can be considered together as uncertainty in
the structural natural frequencies of the model.

3.1 Uncertainty in Structural Natural Frequencies

The natural frequencies of the flexible manipulator system at a nominal robot position(q?)

can be determined from the eigenvalues of W = M;}K as,

w? = \(W) = Xi(M[/K) i=1,2,...,N (10)



where \;(-) denotes the i-th eigenvalue of a matrix. It should be noted that as the matrix
M;; depends on the joint variables of the robot arm, system natural frequencies vary as
the robot configuration varies [14].

When an actual partial differential equation model of the flexible link manipulator
system is transformed into a system governed by ordinary differential equations by using
discretization schemes, we impose constraints that the temporal generalized coordinates of
the neglected modes of the infinite dimensional system are zero. It is known that imposing
any constraint on a dynamic system tend to render the system stiffer, thus increasing the
values of the system natural frequencies [15]. Moreover, in the finite element formulation,
low-order polynomial functions which are local in nature are employed to approximate the
link mode shapes, and as a result the finite element model tend to always over-estimate
the actual natural frequencies of a flexible link manipulator system (see also [11]). In the
following, we examine the stability of closed-loop system when the over-estimated natural
frequencies are used in the joint inversion control law(3).

Let us rewrite the model based joint inversion control law, with the computed version
of matrix W as,

;= (M'I‘T - MZfM;;MTf)u + (hr +cp — sz(M;}(hf + cf) + qu)) (11)

Then the closed-loop equations of motion of the flexible link manipulator system reduce
to,

. . _ —1
&(t) + Goé(t) + Gpe(t) = —(M, — MM M,;) M/ AWq;
d+Myj(hs+cp)+(W—-HAW)qy = —M;M,su

where H = M;}Mrf( M,, — MffMJIJ}M,f )_1MTTf and AW=(W-W). We can
make the following observations:

1. The N x N matrix ‘H is positive definite if N < n and is positive semi-definite if
N > n, where N is the dimension of generalized flexible variables q; and n is the
dimension of joint variables q,. The proof of this follows from the symmetry and
positive definiteness of the matrix (M, — MTTfM]?}MT 7) and from the definition of
system mass matrix M(q).

2. The necessary condition for the above closed-loop system of equations to give bounded,
stable response for qy, is that the closed-loop frequency matriz (W — HAW) is pos-
itive definite.

The above observations clearly indicate that the flexible link manipulator system with
AW < 0 is stable and if AW > 0 then it can be unstable. Hence a flexible manipulator
cannot be effectively controlled using a model-based joint inversion control law, by as-
suming that the model of real system to be more rigid, than it actually is'. In the next
section, we present a robust controller which takes into account uncertainities in stiffness
of the flexible links.

!The FEM formulation results inoverestimated natural frequencies and hence AW > 0.




4 Robust Controller Design

There are many approaches in the literature for the design of robust controllers, in this
paper, we follow a technique based on the second method of Lyapunov as in Leitmann[16].

Let q(t) = (q,‘f1 (t),... ,q,‘fn (t))T represent a desired trajectory in joint space that we
wish the flexible link manipulator system to track. We assume that q¢, q¢, and q¢ are
smooth (i.e. continuously differentiable functions of time) and bounded. For the problem
of tracking the desired trajectory q?(t), and its velocity ¢%(t), the robust model-based
joint inversion control law is given by,

I =My — M;fM;}Mrf) u; + (hy + ¢, - MffM;}(hf +cy+ KQf)) (12)
where u, = @¢ — Gpe(t) — Gyé(t) + Au, and Au is the additional term that has to be
designed to overcome the effects of uncertainty in the system model parameters. The
closed-loop system of equations of the system with this control law(12) would then become,

() + Goe(t) + Gpe(t) = Au+T(t) (13)
Myrar+hp+cp+Kay = —M;p(u + (7)) (14)

The control design to follow is based on the fact that although the uncertainty ¥(¢) is
unknown, it may be possible to estimate worst case bounds on its effects on the tracking
performance of the actual flexible link manipulator system. The control law u, is then
designed to guarantee stability of closed-loop equations(13-14) provided that these quan-
titative bounds on () are satisfied(see [13] for details). The following steps may be used
to compute a stabilizing robust compensator Au.

1. Set the closed-loop system of equations corresponding to joint variables(q,) in state-
space form by defining the joint position and velocity error vectors x; = q,(t) —q2(t),
and x3 = q,(t) — q4(t), as

x = Agx + B (Au + U(t)) (15)

(B (1) (z)

2. Given the system(15) with A, Hurwitz (i.e. all eigenvalues of the matrix A, have
negative real parts), suppose we can find a continuous function ®(x,t¢), which is
bounded in time(t), satisfying the inequalities

where

| Au || < ®(x,t) (17)
[ T@) || < @(x,) (18)



then, we can determine the estimate of this function ®(x,t) using equation(17) as

1 Qo= 5 2V max
®(x,t) = A | D v; —Jmaz 19
(X, ) 1_ o0 (a() || u || + u </\l i:1’U,L + a1 + a9 /\mm(K) ( )
where, [[u || < /(XiL16)) + [ Gy [l I x2 || + [[Gp ||+ x1 [l In the above

equation the quantities ag, a1, ao are constants related to the bounds on estimates
of the mass matrix, the nonlinear Coriolis and centripetal terms and the stiffness
matrix respectively, a;, v;, V}mas are constants related to the bounds on dﬁi, q;zli
and || qy || respectively, and X;, A, are the minimum and maximum eigenvalues of
M 1(q) respectively(see [13] for more details).

According to the above equation, it is important to have a good estimate of the mass
matrix so that ag is within the range from 0 to 1. If ag > 1, the upper bound @
is negative and hence || ¥(¢) || is bounded by a negative value (see inequality(18))
which is undesirable.

3. Since A is Hurwitz, choose a 2n x 2n symmetric, positive definite matrix @Q and let
matrix P be the unique positive definite symmetric solution to Lyapunov equation

ATP+PA,+Q=0 (20)

4. Choose the robust compensator Au then according to

B.Px
—P(x,t)—L— = if | BTP >
A (X, )” BZ;PX || 1 || af'X || Z € (21)
u=
d(x, 1) .
- B! Px if | BLPx| < ¢

where ¢ is a prescribed non-zero positive constant.

The robust control algorithm with u, chosen as —®(x,t) can be shown to be criti-
cally stable(see [13]) and the induced flexible vibrations are bounded. Hence, stability
of the closed-loop flexible manipulator system is ensured during joint trajectory tracking
control(12).

5 Case Study: A Flexible Elbow Manipulator

In this section, we present numerical results of the two-stage control simulation. We use
a 3R flexible elbow manipulator (see Figure 1) with forearm and upperarm modeled as
slender flexible links. The modeling of the flexibility is by the finite element method as
in [11, 13], the dynamic equations of motion are obtained from the kinetic and potential
energies and by using the Lagrangian formulation. The physical system parameters of the
robot model are given in Table 1.
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Figure 1: A schematic of a 3R flexible elbow manipulator

Physical system parameters Value

mass of link 1 (m1) 3.66 kg
linear mass density of link 2 (p2As2) 0.331 kgm™*
linear mass density of link 3 (p3A3) 0.331 kgm !

mass of payload (m,) 0.1 kg
length of link 1 (a;) 0.12 m
length of link 2 (ag) 1.0m
length of link 3 (as3) 1.0 m
rotary inertia of joint 1 (Ip,) 0.4 kgm?
rotary inertia of joint 2 (Ij,) 3.275 kgm?
rotary inertia of joint 3 (Ip,) 3.275 kgm?

I)2) 1165.4916 Nm?

1
flexural rigidity of link 2 ((
((EI)3) 1165.4916 Nm?

flexural rigidity of link 3

Table 1: Physical system parameters for 3R flexible elbow manipulator



5.1 Numerical Results

The numerical simulation of the two-stage control scheme, for a 3 degree-of-freedom,
spatial flexible elbow manipulator (see Figure 1) were performed on a SUN-SPARC-
10 Workstation. The first-order differential equations were solved by a variable step,
variable order (of interpolation) predictor corrector (PECE) Adams method. The de-
sired trajectory was chosen to be a smooth (sine profile with zero velocity and accel-
eration at the start and at the end of trajectory) right-circular helix of radius 25cm,
pitch 2.5cm and 37 rotations about the helix axis. The time for the entire trajec-
tory was chosen to be relatively small, 1.0 second, to excite oscillations and to eval-
uate the performance of the two-stage controller in trajectory tracking and suppres-
sion of oscillations. The desired trajectory of the end-effector, and the corresponding
joint trajectories (assuming the links are rigid) are shown in Figure 2. The parame-
ters of controller gain matrices are as follows: for the I-stage model-based joint inver-
sion controller, the gain matrices are chosen as, G, = diag{64.0,64.0,64.0} and G, =
diag{32.0,32.0,32.0}. For the II-stage impedance controller, the gain matrices are cho-
sen as, G, = diag{100.0,100.0,400.0} and G, = diag{40.0,40.0,80.0}. The quantitative
bounds as required by the robust compensator design for the particular desired joint
trajectory are chosen as: v; = 580.23 deg/sec, v, = 102.89 deg/sec, v3 = 281.92 deg/sec,
oy = 0.25, N\; = 0.1034e + 01, X, = 0.2708e + 05, ap = 1.0045e + 05, and € = 0.001. We
present the simulation results for three cases (for the spatial elbow manipulator):

Case 1: two-stage control algorithm with no uncertainties in model parameters of the
model-based joint inversion control law(3).

Case 2: uncertainty in mass parameters of the model-based control law, but without a
robust compensator. Mass is underestimated by 25%.

Case 3: uncertainty in both the mass and stiffness parameters of the model-based control
law, and with the robust compensator Au (21). Mass is underestimated by 25% and
stiffness is overestimated by 25%.

The results for all three cases are summarized in Table 2 and we present plots of the
tip and joint errors (figure 3) and the time history of the flexible variables (figure 4) for
Case 3(plots for Case 1 and 2 are available in [13]). For Case 1, the joint errors during the
trajectory tracking phase are quite small and the tip errors induced during the trajectory
tracking phase (of the order of 5 cm) are suppressed in the second stage by the impedance
control law. We can observe from Table 2, that the errors are much larger when there
is uncertainty in the model. For the Case 3, we can observe from Figure 3 and Table 2,
that the performance of the model-based control law with robust compensator approaches
the performance of the control law when there was no uncertainties in model parameters.
This clearly illustrates the necessity for a robust compensator in case of uncertainty in
model parameters of the model-based joint inversion control algorithms.
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right circular helix, and the correspond-

ing joint position and velocity trajectories of spatial elbow manipulator (— : q;il (q',‘fl),
e gd(pdy . .44 (5
Py (Gry)y - 5 4y (d7y)
case 1 case 2 case 3
peak value | final value | peak value | final value | peak value | final value
jt. pos. | e1 0.027 0.002 4.515 0.044 0.027 0.002
error | ey 1.186 1.186 8.466 1.551 1.187 1.187
(deg) | es 0.337 0.039 19.291 1.335 0.329 0.040
jt. vel. | é; 1.209 0.035 81.308 0.066 1.355 0.018
error | é 29.342 0.071 61.977 0.882 29.034 0.069
(deg/s) | €3 9.638 0.039 106.822 3.101 9.468 0.038
tip pos. | ez 0.011 0.002 0.202 0.012 0.011 0.002
error | ey 0.011 0.004 0.299 0.026 0.011 0.004
(m) €, 0.046 0.013 0.238 0.014 0.046 0.013
tip vel. | ég 0.090 0.0001 0.949 0.025 0.090 0.0006
error | €, 0.120 0.001 1.814 0.052 0.120 0.0008
(m/s) | é, 0.288 0.0006 1.247 0.003 0.291 0.0005

Table 2: Joint and Tip errors of spatial elbow manipulator for two-stage controller
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Figure 3: Case 3 : time history of the joint position, velocity, and tip position, velocity
errors for two-stage controller (Joint error: —: ej(é1), - - - : e2(é2), ---- : eg(és); Tip

error: — : eg(€g), - - - ey(éy), ---- s ey(éy)

6 Summary

In this paper, we have addressed the problem of active damping of flexural vibrations of
the robot links by only the joint control inputs. We have presented robustness results
for a model based control algorithm used for the trajectory tracking in multi-link flexible
manipulator systems. We have shown analytically that over-estimation of natural frequen-
cies, a consequence of finite element modeling, may lead to unstable closed-loop response
of the actual manipulator system using a model based inversion control algorithm. A ro-
bust controller design based on the second method of Lyapunov, using simple quantitative
bounds on the model uncertainties, is proposed for use in multi-link flexible manipulator
control. Numerical results for a flexible spatial elbow manipulator is used to illustrate the
effectiveness of the proposed control schemes.
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